No CrossRef data available.
Published online by Cambridge University Press: 14 November 2011
Let T be a hyponormal operator on a Hilbert space, so that T*T – TT*≧ 0. Let T have the Cartesian representation T = H + iJ where H has the spectral family {Et} and suppose that EtJ − JEt is compact for almost all t on a Borei set α satisfying E(α) = I. The principal result (Theorem 3) is that under these hypotheses T must be normal. In case T is hyponormal and essentially normal some sufficient conditions are given assuring that, for a fixed t, EtJ − JEt is compact.