Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-12-05T02:09:13.111Z Has data issue: false hasContentIssue false

Homogenisation of transport kinetic equations with oscillating potentials

Published online by Cambridge University Press:  14 November 2011

E. Frenod
Affiliation:
CMLA, ENS Cachan, URA CNRS 1161, 61 avenue du Président Wilson, F-94235 Chachan Cedex, France
K. Hamdache
Affiliation:
MAB, CNRS/Université de Bordeaux I, 351 cours de la libération, F-33405 Talence Cedex, France

Abstract

We consider the homogenisation of transport kinetic equations with a highly periodic oscillating external field. The external field, acting on the particles, consists of a sum of a field deriving from a periodic potential and a bounded periodic perturbation. For the profile function generated by the oscillating solution of the problem, we derive a kinetic model with transmission boundary conditions in the energy variable. In some cases, for example when the field is not perturbed, we deduce a transport kinetic equation with memory effect satisfied by the weak-* limit of the sequence of solutions.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Abraham, R., Marsden, J. E. and Ratiu, T.. Differential Calculus and Manifold Analysis (Berlin: Springer, 1983).Google Scholar
2Alexandra, R. and Hamdache, K.. Homogenization of kinetic equations in non homogeneous medium (to appear).Google Scholar
3Allaire, G.. Homogenization and two scale convergence. S.I.A.M. J. Math. Anal. 23 (1992), 1482–518.CrossRefGoogle Scholar
4Amirat, Y., Hamdache, K. and Ziani, A.. Homogénéisation d'équations hyperboliques due premier ordre et application aux écoulements missibles en milieux poreux. Ann. Inst. H. Poincare Anal. Non Lin. 6 (1989), 397417.CrossRefGoogle Scholar
5Amirat, Y., Hamdache, K. and Ziani, A.. Kinetic formulation for a transport equation with memory. Comm. Partial Differential Equations 16 (1991), 1287–311.CrossRefGoogle Scholar
6Amirat, Y., Hamdache, K. and Ziani, A.. Homogenization of parametrised families of hyperbolic problems. Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), 199221.CrossRefGoogle Scholar
7Amirat, Y., Hamdache, K. and Ziani, A.. Homogenization of degenerated wave equations with periodic coefficients. S.I.A.M. J. Math. Anal. 24 (1993), 1226–53.CrossRefGoogle Scholar
8Beals, R. and Protopopescu, V.. Abstract time dependent transport equations. J. Math. Anal. Appl. 121 (1987), 370405.CrossRefGoogle Scholar
9Bensoussan, A., Lions, J. L. and Papanicolaou, G.. Asymptotic analysis for periodic structures, Studies in Mathematics and its Applications 5 (Amsterdam: North-Holland, 1978).Google Scholar
10Dautray, R. and Lions, J. L.. Analyse mathematique et calcul numérique pour les sciences et les techniques, Vol. 9 (Paris: INSTN, CEA, Masson, 1988).Google Scholar
11Perna, R. J.Di and Lions, P. L.. Ordinary differential equation, transport theory and Sobolev spaces. Inventiones Math. 98 (1990), 511–47.Google Scholar
12Perna, R. J. Di and Lions, P. L.. Global weak solution for Maxwell-Poisson system. Comm. Pure Appl. Math. 120 (1990), 729–57.Google Scholar
13Perna, R. J. Di, Lions, P. L. and Meyer, Y.. Lp regularity of velocity average. Ann. Inst. H. Poincaré Anal. Non Lin. 8 (1991), 271–87.Google Scholar
14, W. E.Homogenization of linear and non linear transport equations. Comm. Pure Appl. Math. 45 (1992), 301–26.CrossRefGoogle Scholar
15Evans, L. C.. Periodic homogenisation of certain fully nonlinear partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A 20 (1992), 245–65.CrossRefGoogle Scholar
16Fannjianng, A. and Papanicolaou, G.. Convection enhanced diffusion for periodic flows. S.l.A.M. J. Appl. Math. 54 (1994), 333408.CrossRefGoogle Scholar
17Frénod, E.. Homogénéisation d'équations cinétiques avec potentials oscillants (Thése de doctorat de l'université Paris Nord, F-93430 Villetaneuse, 1994).Google Scholar
18Frénod, E. and K. Hamdache. Homogenization of a kinetic equation with periodic potential (Raport no. 9308, CMLA, ENS Cachan, F-94230 Cahan, 1993).Google Scholar
19Gérard, P.. Mesures semi-classiques et ondes de Bloch (Seminaire EDP 1990–1991 no. XVI, Ecole Polytechnique, F-91120 Palaiseau, 1991).Google Scholar
20Golse, F., Lions, P. L., Perthame, B. and Sentis, R.. Regularity of the moments of the solution of a transport equation. J. Funct. Anal. 76 (1988), 110–25.CrossRefGoogle Scholar
21Gradshteyn, I. S. and Ryzhik, I. M.. Table of integrals, series and products (New York: Academic Press, 1980).Google Scholar
22Greenberg, W., Mee, C. V. M. Van der and Protopopescu, V.. Boundary value problems in abstract kinetic theory. Oper. Theory. Adv. Appl. 23 Birkhauser (1987).Google Scholar
23Lions, P. L. and Paul, T.. Sur les mesures de Wigner (Rapport no. 9227, CERE-MADE, université de Paris-Dauphine, F-75016 Paris, 1992).Google Scholar
24Lions, P. L., Papanicolaou, G. and Varadhan, S. R. S.. Homogenization of Hamilton-Jacobi equations (preprint).Google Scholar
25N'Guetseng, G.. A general convergence result for a functional related to the theory of homogenization. S.I.A.M. J. Math. Anal. 29 (1989), 608–23.CrossRefGoogle Scholar
26N'Guetseng, G.. Asymptotic analysis for a stiff variational problem arising in mechanics. S.I.A.M. J. Math. Anal. 21 (1990), 1394–414.CrossRefGoogle Scholar
27Palencia, E. Sanchez. Non Homogeneous Media and Vibration Theory, Lecture Notes in Physics 127 (Berlin: Springer, 1980).Google Scholar
28Soward, A. M. and Childress, S.. Large magnetic Reynolds number dynamo action in a spacially periodic flow with mean motion. Philos. Trans. Roy. Soc. London Ser. A 333 (1990), 649733.Google Scholar
29Tartar, L.. Cours Peccot, college de France, 1977.Google Scholar
30Tartar, L.. Remarks on homogenization. In Homogenization and Effective Moduli of Materials and Media, IMA Volumes in Mathematics and its Applications 1, 228–46 (Berlin: Springer, 1996).Google Scholar
31Tartar, L.. Non local effects induced by homogenization. In Partial Differential Equations and the Calculus of Variations, Essays in Honour of E. De Giorgy, Vol. II, 925–38 (Boston: Birkaüser, 1989).Google Scholar