Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T20:19:47.166Z Has data issue: false hasContentIssue false

Homogenisation and θ — 2 convergence

Published online by Cambridge University Press:  14 November 2011

Radjesvarane Alexandre
Affiliation:
MAPMO, URA CNRS 1803, Batiment de Mathématiques, BP 6759, 45067 Orleans, France

Abstract

We introduce a new concept of convergence for bounded sequences of functions in L2(Ω), called θ – 2 convergence, where Ω is an open set of ℝn and θ a C2 diffeomorphism of ℝn. This tool enables us to deal with homogenisation problems in some nonperiodic perforated domains. In particular, it provides a simple proof, and extensions, of a recent result of M. Briane.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Allaire, G.. Homogenization and two scale convergence. SIAM J. Appl. Math. 23 (1992), 1482–518.CrossRefGoogle Scholar
2Bensoussan, A., Lions, J. L. and Papanicolaou, G.. Asymptotic Analysis in Periodic Structures, North-Holland Applied Mathematics 7 (Amsterdam: North-Holland, 1979).CrossRefGoogle Scholar
3Briane, M.. Homogenization of a non periodic material. J. Math. Pures Appl. (1994), 421–52.Google Scholar
4Cioranescu, D. and Saint Jean Paulin, J.. Homogenization in open set with holes. J. Math. Anal. Appl. 71 (1979), 590607.CrossRefGoogle Scholar
5Murat, F.. H-convergence (Seminaire d'analyse fonctionnelle et numérique, Université d'Alger Maths, 1978).Google Scholar
6Nguetseng, G.. A general convergence result related to homogenization. SIAM J. Appl. Math. 29 (1990), 608–23.Google Scholar
7Sanchez-Palencia, E.. Non homogeneous media and vibration theory, Lecture Notes in Physics 127 (Berlin: Springer, 1977).Google Scholar
8Tartar, L.. Probèmes d'homogénéisation dans les équations aux dérivées partielles (Cours Peccot, Collège de France, 1977).Google Scholar