Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T10:26:13.639Z Has data issue: false hasContentIssue false

A generalization of M. G. Krein's method of directing functional to linear relations

Published online by Cambridge University Press:  14 November 2011

H. Langer
Affiliation:
Sektion Mathematik, Technische Universität, Dresden, GDR
B. Textorius
Affiliation:
Department of Mathematics, University of Linköping, Sweden

Synopsis

M. G. Krein's method of directing functional is generalized in a straight-forward way to symmetric linear relations. Applications to Stieltjes differential boundary problems are indicated.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Coddington, E. A.Extension theory of formally normal and symmetric subspaces. Mem. Amer. Math. Soc. 134 (1973).Google Scholar
2Dijksma, A. and Snoo, H. S. V. DeSelf-adjoint extensions of symmetric subspaces. Pacific J. Math. 54 (1974), 71–100.CrossRefGoogle Scholar
3Coddington, E. A. and Dijksma, A.Self-adjoint subspaces and eigenfunction expansions for ordinary differential subspaces. J. Differential Equations 20 (1976), 473526.CrossRefGoogle Scholar
4Krein, M. G.On Hermitian operators with directing functionals. Sb. Trud. Inst. Mat, Kiev 10 (1948), 83106.Google Scholar
5Langer, H.Über die Methode der richtenden Funktionale von M. G. Krein. Acta Math. Acad. Sci. Hungar. 21 (1970), 207224.CrossRefGoogle Scholar
6Langer, H. and Textorius, B.On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert space. Pacific J. Math. 72 (1977), 135165.CrossRefGoogle Scholar
7Coddington, E. A.Self-adjoint problems for nondensely defined ordinary differential operators and their eigenfunction expansions. Advances in Math. 15 (1975), 140.CrossRefGoogle Scholar
8Krall, A. M.nth order Stieltjes differential boundary operators and Stieltjes differential boundary systems. J. Differential equations 24 (1977), 253267.CrossRefGoogle Scholar
9Orcutt, B. Canonical differential equations (Univ. Virginia Ph.D. Thesis, 1969).Google Scholar
10Branges, L. deHilbert spaces of entire functions (Englewood Cliffs, N. J.: Prentice-Hall, 1968).Google Scholar