Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T17:43:07.522Z Has data issue: false hasContentIssue false

A generalization of Krasnosel'skii compression fixed point theorem by using star convex sets

Published online by Cambridge University Press:  25 January 2019

Cristina Lois-Prados
Affiliation:
Instituto de Matemáticas, Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain ([email protected]; [email protected])
Rosana Rodríguez-López
Affiliation:
Instituto de Matemáticas, Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain ([email protected]; [email protected])

Abstract

In the framework of fixed point theory, many generalizations of the classical results due to Krasnosel'skii are known. One of these extensions consists in relaxing the conditions imposed on the mapping, working with k-set contractions instead of continuous and compact maps. The aim of this work if to study in detail some fixed point results of this type, and obtain a certain generalization by using star convex sets.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Anderson, D. R., Avery, R. I. and Henderson, J.. Functional expansion-compression fixed point theorem of Leggett-Williams type. Electron. J. Differ. Eq. 2010 (2010), 19.Google Scholar
2Avery, R. I., Henderson, J. and O'Regan, D.. Functional compression-expansion fixed point theorem. Electron. J. Differ. Eq. 2008 (2008), 112.Google Scholar
3Các, N. P. and Gatica, J. A.. Fixed point theorems for mappings in ordered Banach spaces. J. Math. Anal. Appl. 71 (1979), 547557.CrossRefGoogle Scholar
4Darbo, G.. Punti uniti transformazioni a condominio non-compactto. Rend. Semin. Mat. U. Pad. 24 (1955), 8492.Google Scholar
5Güo, D. and Lakshmikhantam, V.. Nonlinear Problems in Abstract Cones (California: Notes and Reports in Mathematics in Science and Engineering, 1998).Google Scholar
6Krasnosel'skii, M. A.. Fixed points of cone-compressing or cone-expanding operators. Soviet Math. Dokl. 1 (1960), 12851288.Google Scholar
7Kwong, M. K.. On Krasnoselskii's cone fixed point theorem. Fixed Point Theory A. 2008 (2008), 18, article n 164537.Google Scholar
8Munkres, J. R.. Topology (USA: Prentice Hall, 2000).Google Scholar
9Potter, A. J. B.. A fixed point theorem for positive k-set contractions. P. Edinburgh Math. Soc. 19 (1974), 93102.CrossRefGoogle Scholar
10Rudin, W.. Functional analysis (New York: McGraw-Hill, 1991).Google Scholar
11Webb, J. R. L.. New fixed point index results and nonlinear boundary value problems. Bull. Lond. Math. Soc. 49 (2017), 534547.CrossRefGoogle Scholar