Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T22:33:39.222Z Has data issue: false hasContentIssue false

Free-discontinuity problems generated by singular perturbation

Published online by Cambridge University Press:  14 November 2011

Roberto Alicandro
Affiliation:
SISSA, via Beirut 4, 34013 Trieste, Italy e-mail: [email protected]@[email protected]
Andrea Braides
Affiliation:
SISSA, via Beirut 4, 34013 Trieste, Italy e-mail: [email protected]@[email protected]
Maria Stella Gelli
Affiliation:
SISSA, via Beirut 4, 34013 Trieste, Italy e-mail: [email protected]@[email protected]

Extract

We show that some free discontinuity problems can be obtained as a limit of nonconvex local functionals with a singular perturbation of higher order.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Alberti, G. and Mantegazza, C.. A note on the theory of SVB functions. Boll. Un. Mat. Ital. B 11 (1997), 375–82.Google Scholar
2Ambrosio, L.. compactness, Atheorem for a new class of functions of bounded variation. Boll. Un. Mat. Ital. B 3 (1989), 857–81.Google Scholar
3Ambrosio, L. and Braides, A.. Energies in SBV and variational models in fracture mechanics. Homogenization and Applications to Material Sciences (Cioranescu, D., Damlamian, A., Donato, P. eds), Gakuto, Tokio, 1997, 122.Google Scholar
4Ambrosio, L. and Tortorelli, V. M.. Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math. 43 (1990), 9991036.CrossRefGoogle Scholar
5Bouchitté, G., Dubs, C. and Seppecher, P.. Transitions de phases avec un potentiel dégénéré a l'infini. C. R. Acad. Sci. Paris 323 (1996), 1103–108.Google Scholar
6Braides, A. and Maso, G. Dal. Nonlocal approximation of the Mumford–Shah functional. Calc. Var. Partial Differential Equations 5 (1997), 293322.CrossRefGoogle Scholar
7Braides, A. and Garroni, A.. On the nonlocal approximation of free discontinuity problems. Comm. Part. Diff. Equations 23 (1998), 817–29.CrossRefGoogle Scholar
8Coleman, B. D. and Hodgdon, M. L.. On shear bands in ductile materials. Arch. Rational Mech. Anal. 90(1985), 219–47.CrossRefGoogle Scholar
9Cortesani, G.. Sequences of non-local functionals which approximate free discontinuity problems. Arch. Rational Mech. Anal. (to appear).Google Scholar
10Maso, G. Dal. An Introduction to Γ-convergence (Boston: Birkhaüser, 1993).CrossRefGoogle Scholar
11Giorgi, E. De and Ambrosio, L.. Un nuovo funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 82 (1988), 199210.Google Scholar
12Gobbino, M.. Finite difference approximation of the Mumford–Shah functional. Comm. Pure Appl. Math. 51 (1998), 197228.3.0.CO;2-6>CrossRefGoogle Scholar
13Ioffe, A. D.. On the lower semicontinuity of integral functionals. SIAM J. Control Optim. 15 (1977), 521–38; 991–1000.CrossRefGoogle Scholar
14Modica, L. and Mortola, S.. Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. B 14 (1977), 285–99.Google Scholar
15Morel, J. M. and Solimini, S.. Variational Models in Image Segmentation (Boston: Birkhaüser, 1995).Google Scholar
16Mumford, D. and Shah, J.. Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 17 (1989), 577685.Google Scholar
17Ryzhak, E. I.. Investigation of modes of constitutive instability manifestation in a one-dimensional model. Z. Angew. Math. Mech. 73 (1993), 380–3.Google Scholar
18Triantafyllidis, N. and Aifantis, E. C.. A gradient approach to localization deformation. J. Elasticity 16(1986), 225–37.CrossRefGoogle Scholar
19Triantafyllidis, N. and Bardenhagen, S.. On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models. J. Elasticity 33 (1993), 259–93.CrossRefGoogle Scholar
20Truskinovsky, L.. Fracture as a phase transition. In Contemporary research in the mechanics and mathematics of materials, eds Batra, R. C. and Beatty, M. F., 322–32 (Barcelona: CIMNE, 1996).Google Scholar
21Truskinovsky, L. and Zanzotto, G.. Ericksen's bar revisited: energy wiggles. J. Mech. Phys. Solids 44 (1996), 1372–408.CrossRefGoogle Scholar