Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T23:05:36.073Z Has data issue: false hasContentIssue false

Existence and non-existence of solutions to elliptic equations with a general convection term

Published online by Cambridge University Press:  20 March 2014

Salomón Alarcón
Affiliation:
Departamento de Matemática, Universidad Técnica Federico Santa María, Casilla V-110, Avenida España 1680, Valparaíso, Chile, ([email protected])
Jorge García-Melián
Affiliation:
Departamento de Análisis Matemático, Universidad de La Laguna, Campus de Anchieta, Avenida Astrofísico Francisco Sánchez s/n, 38271 La Laguna, Spain Instituto Universitario de Estudios Avanzados en Física Atómica, Molecular y Fotónica, Facultad de Física, Universidad de La Laguna, Campus de Anchieta, Avenida Astrofísico Francisco Saínchez s/n, 38203 La Laguna, Spain, ([email protected])
Alexander Quaas
Affiliation:
Departamento de Matemaítica, Universidad Tíecnica Federico Santa María, Casilla V-110, Avenida Espanña 1680, Valparaíso, Chile, (, [email protected])

Abstract

In this paper we consider the nonlinear elliptic problem −Δu + αu = g(∣∇u∣) + λh(x) in Ω, u = 0 on ∂Ω, where Ω is a smooth bounded domain of ℝN, α ≥ 0, g is an arbitrary C1 increasing function and h ∈ C1() is non-negative. We completely analyse the existence and non-existence of (positive) classical solutions in terms of the parameter λ. We show that there exist solutions for every λ when α = 0 and the integral 1/g(s)ds = ∞, or when α > 0 and the integral s/g(s)ds = ∞. Conversely, when the respective integrals converge and h is non-trivial on ∂Ω, existence depends on the size of λ. Moreover, non-existence holds for large λ. Our proofs mainly rely on comparison arguments, and on the construction of suitable supersolutions in annuli. Our results include some cases where the function g is superquadratic and existence still holds without assuming any smallness condition on λ.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)