Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T10:37:10.009Z Has data issue: false hasContentIssue false

Existence and non-existence of minimal graphic and p-harmonic functions

Published online by Cambridge University Press:  25 January 2019

Jean-Baptiste Casteras
Affiliation:
Departement de Mathematique, Universite libre de Bruxelles, CP 214, Boulevard du Triomphe, B-1050 Bruxelles, Belgium ([email protected])
Esko Heinonen
Affiliation:
Department of Mathematics and Statistics, P.O.B. 68 (Gustaf Hällströmin katu 2b), 00014 University of Helsinki, Finland ([email protected]; [email protected])
Ilkka Holopainen
Affiliation:
Department of Mathematics and Statistics, P.O.B. 68 (Gustaf Hällströmin katu 2b), 00014 University of Helsinki, Finland ([email protected]; [email protected])

Abstract

We prove that every entire solution of the minimal graph equation that is bounded from below and has at most linear growth must be constant on a complete Riemannian manifold M with only one end if M has asymptotically non-negative sectional curvature. On the other hand, we prove the existence of bounded non-constant minimal graphic and p-harmonic functions on rotationally symmetric Cartan-Hadamard manifolds under optimal assumptions on the sectional curvatures.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Abresch, U.. Lower curvature bounds, Toponogov's theorem, and bounded topology. Ann. Sci. École Norm. Sup. (4) 18 (1985), 651670.CrossRefGoogle Scholar
2Bombieri, E., De Giorgi, E. and Miranda, M.. Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche. Arch. Rational Mech. Anal. 32 (1969), 255267.CrossRefGoogle Scholar
3Buser, P.. A note on the isoperimetric constant. Ann. Sci. École Norm. Sup. (4) 15 (1982), 213230.CrossRefGoogle Scholar
4Cai, M.. Ends of Riemannian manifolds with nonnegative Ricci curvature outside a compact set. Bull. Amer. Math. Soc. (N.S.) 24 (1991), 371377.CrossRefGoogle Scholar
5Casteras, J.-B., Heinonen, E. and Holopainen, I.. Solvability of minimal graph equation under pointwise pinching condition for sectional curvatures. J. Geom. Anal. 27 (2017a), 11061130.CrossRefGoogle Scholar
6Casteras, J.-B., Holopainen, I. and Ripoll, J. B.. On the Asymptotic Dirichlet Problem for the Minimal Hypersurface Equation in a Hadamard Manifold. Potential Anal. 47 (2017b), 485501.CrossRefGoogle Scholar
7Casteras, J.-B., Heinonen, E. and Holopainen, I.. Dirichlet problem for f-minimal graphs. J. Anal. Math. To appear.Google Scholar
8Casteras, J.-B., Holopainen, I. and Ripoll, J.B.. Asymptotic Dirichlet problem for ${\cal A}$-harmonic and minimal graph equations in a Cartan-Hadamard manifolds. Comm. Anal. Geom. To appear.Google Scholar
9Dajczer, M. and de Lira, J. H. S.. Entire bounded constant mean curvature Killing graphs. J. Math. Pures Appl. (9) 103 (2015), 219227.CrossRefGoogle Scholar
10Dajczer, M. and de Lira, J. H. S.. Entire unbounded constant mean curvature Killing graphs. Bull. Braz. Math. Soc. (NS) 48 (2017), 187198.CrossRefGoogle Scholar
11Ding, Q., Jost, J. and Xin, Y.. Minimal graphic functions on manifolds of nonnegative Ricci curvature. Comm. Pure Appl. Math. 69 (2016), 323371.CrossRefGoogle Scholar
12Eberlein, P. and O'Neill, B.. Visibility manifolds. Pacific J. Math. 46 (1973), 45109.CrossRefGoogle Scholar
13Fornari, S. and Ripoll, J.. Killing fields, mean curvature, translation maps. Illinois J. Math. 48 (2004), 13851403.CrossRefGoogle Scholar
14Greene, R. E. and Wu, H.. Function theory on manifolds which possess a pole, volume 699 of Lecture Notes in Mathematics (Berlin: Springer, 1979).CrossRefGoogle Scholar
15Greene, R. E. and Wu, H.. Gap theorems for noncompact Riemannian manifolds. Duke Math. J. 49 (1982), 731756.CrossRefGoogle Scholar
16Grigor'yan, A. and Saloff-Coste, L.. Stability results for Harnack inequalities. Ann. Inst. Fourier (Grenoble) 55 (2005), 825890.CrossRefGoogle Scholar
17Gromov, M.. Metric structures for Riemannian and non-Riemannian spaces. In Modern Birkhäuser Classics, english edn (ed. Katz, M., Pansu, P. and Semmes, S.). Based on the 1981 French original, With appendices, Translated from the French by Sean Michael Bates (Boston, MA: Birkhäuser Boston, Inc., 2007).Google Scholar
18Heinonen, E.. Asymptotic Dirichlet problem for ${\cal A}$-harmonic functions on manifolds with pinched curvature. Potential Anal. 46 (2017), 6374.CrossRefGoogle Scholar
19Heinonen, J., Kilpeläinen, T. and Martio, O.. Nonlinear potential theory of degenerate elliptic equations (New York: The Clarendon Press, Oxford University Press, 1993). Oxford Science Publications.Google Scholar
20Holopainen, I.. Volume growth, Green's functions, and parabolicity of ends. Duke Math. J. 97 (1999), 319346.CrossRefGoogle Scholar
21Holopainen, I.. Asymptotic Dirichlet problem for the p-Laplacian on Cartan-Hadamard manifolds. Proc. Amer. Math. Soc. 130 (2002), 33933400, (electronic).CrossRefGoogle Scholar
22Holopainen, I. and Ripoll, J. B.. Nonsolvability of the asymptotic Dirichlet problem for some quasilinear elliptic PDEs on Hadamard manifolds. Rev. Mat. Iberoam. 31 (2015), 11071129.CrossRefGoogle Scholar
23Holopainen, I. and Vähäkangas, A.. Asymptotic Dirichlet problem on negatively curved spaces. J. Anal. 15 (2007), 63110.Google Scholar
24Kasue, A.. A compactification of a manifold with asymptotically nonnegative curvature. Ann. Sci. École Norm. Sup. (4) 21 (1988), 593622.CrossRefGoogle Scholar
25Li, P. and Tam, L.-F.. Green's functions, harmonic functions, and volume comparison. J. Differential Geom. 41 (1995), 277318.CrossRefGoogle Scholar
26Liu, Z.-D.. Ball covering property and nonnegative Ricci curvature outside a compact set. In Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), volume 54 of Proc. Sympos. Pure Math., pp. 459464 (ed. Greene, R. and Yau, S.-T.) (Providence, RI: Amer. Math. Soc., 1993).CrossRefGoogle Scholar
27March, P.. Brownian motion and harmonic functions on rotationally symmetric manifolds. Ann. Probab. 14 (1986), 793801.CrossRefGoogle Scholar
28Ripoll, J. and Telichevesky, M.. Complete minimal graphs with prescribed asymptotic boundary on rotationally symmetric Hadamard surfaces. Geom. Dedicata 161 (2012), 277283.CrossRefGoogle Scholar
29Rosenberg, H., Schulze, F. and Spruck, J.. The half-space property and entire positive minimal graphs in M × ℝ. J. Differential Geom. 95 (2013), 321336.CrossRefGoogle Scholar
30Spruck, J.. Interior gradient estimates and existence theorems for constant mean curvature graphs in M n × R. Pure Appl. Math. Q. 3 (2007), 785800.CrossRefGoogle Scholar
31Vähäkangas, A.. Bounded p-harmonic functions on models and Cartan-Hadamard manifolds. Unpublished licentiate thesis, Department of Mathematics and Statistics, University of Helsinki, 2006.Google Scholar
32Vähäkangas, A.. Dirichlet problem at infinity for ${\cal A}$-harmonic functions. Potential Anal. 27 (2007), 2744.CrossRefGoogle Scholar
33Vähäkangas, A.. Dirichlet problem on unbounded domains and at infinity. Reports in Mathematics, Preprint 499, Department of Mathematics and Statistics, University of Helsinki, 2009.Google Scholar