Hostname: page-component-669899f699-tzmfd Total loading time: 0 Render date: 2025-04-27T17:05:11.784Z Has data issue: false hasContentIssue false

Existence and analyticity of solutions of the Kuramoto–Sivashinsky equation with singular data

Published online by Cambridge University Press:  20 November 2024

David M. Ambrose
Affiliation:
Department of Mathematics, Drexel University, Philadelphia, PA 19104, USA ([email protected]) (corresponding author)
Milton C. Lopes Filho
Affiliation:
Departamento de Matemática Aplicada, Instituto de Matematica, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, Rio de Janeiro, RJ 21941-909, Brazil ([email protected], [email protected])
Helena J. Nussenzveig Lopes
Affiliation:
Departamento de Matemática, Instituto de Matemática, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, Rio de Janeiro, RJ, Brazil ([email protected])

Abstract

We prove the existence of solutions to the Kuramoto–Sivashinsky equation with low regularity data in function spaces based on the Wiener algebra and in pseudomeasure spaces. In any spatial dimension, we allow the data to have its antiderivative in the Wiener algebra. In one spatial dimension, we also allow data that are in a pseudomeasure space of negative order. In two spatial dimensions, we also allow data that are in a pseudomeasure space one derivative more regular than in the one-dimensional case. In the course of carrying out the existence arguments, we show a parabolic gain of regularity of the solutions as compared to the data. Subsequently, we show that the solutions are in fact analytic at any positive time in the interval of existence.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ambrose, D. M., Lopes Filho, M. C. and Nussenzveig Lopes, H. J.. Existence and analyticity of the Lei-Lin solution of the Navier-Stokes equations on the torus. Proc. Amer. Math. Soc 152 (2023), 781795.Google Scholar
Ambrose, D. M. and Mazzucato, A. L.. Global existence and analyticity for the 2D Kuramoto-Sivashinsky equation. J. Dynam. Differ. Equ. 31 (2019), 15251547 10.1007/s10884-018-9656-0.CrossRefGoogle Scholar
Ambrose, D. M. and Mazzucato, A. L.. Global solutions of the two-dimensional Kuramoto-Sivashinsky equation with a linearly growing mode in each direction. J. Nonlinear Sci. 31 (2021), 10.1007/s00332-021-09748-8.CrossRefGoogle Scholar
Auscher, P. and Tchamitchian, P.. Espaces critiques pour le système des equations de Navier-Stokes incompressibles. No modification to the text. This work was done when the first author was at Université de Picardie. https://hal.archives-ouvertes.fr/hal-00344728, (1999).Google Scholar
Bae, H.. Existence and analyticity of Lei-Lin solution to the Navier-Stokes equations. Proc. Amer. Math. Soc. 143 (2015), 28872892 10.1090/S0002-9939-2015-12266-6.CrossRefGoogle Scholar
Bae, H., Biswas, A. and Tadmor, E.. Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces. Arch. Ration. Mech. Anal. 205 (2012), 963991 10.1007/s00205-012-0532-5.CrossRefGoogle Scholar
Bellout, H., Benachour, S. and Titi, E. S.. Finite-time singularity versus global regularity for hyper-viscous Hamilton-Jacobi-like equations. Nonlinearity. 16 (2003), 19671989 10.1088/0951-7715/16/6/305.CrossRefGoogle Scholar
Benachour, S., Kukavica, I., Rusin, W. and Ziane, M.. Anisotropic estimates for the two-dimensional Kuramoto-Sivashinsky equation. J. Dynam. Differ. Equ. 26 (2014), 461476 10.1007/s10884-014-9372-3.CrossRefGoogle Scholar
Biswas, A. and Swanson, D.. Existence and generalized Gevrey regularity of solutions to the Kuramoto-Sivashinsky equation in $\mathbb{R}^n$. J. Differ. Equ. 240 (2007), 145163 10.1016/j.jde.2007.05.022.CrossRefGoogle Scholar
Bronski, J. C. and Gambill, T. N.. Uncertainty estimates and L 2 bounds for the Kuramoto-Sivashinsky equation. Nonlinearity. 19 (2006), 20232039 10.1088/0951-7715/19/9/002.CrossRefGoogle Scholar
Cannone, M.. Ondelettes, Paraproduits et Navier-Stokes. (Diderot Editeur, Paris, 1995). With a preface by Yves Meyer.Google Scholar
Cannone, M.. Harmonic analysis and Navier-Stokes equations with application to the Boltzmann equation. Lectures on the Analysis of Nonlinear Partial Differential equations. Part 2, Morningside Lect. Math. Vol. 2, , (Int. Press, Somerville, MA, 2012).Google Scholar
Cannone, M. and Karch, G.. Smooth or singular solutions to the Navier-Stokes system? J. Differ. Equ. 197 (2004), 247274 10.1016/j.jde.2003.10.003.CrossRefGoogle Scholar
Coti Zelati, M., Dolce, M., Feng, Y. and Mazzucato, A. L.. Global existence for the two-dimensional Kuramoto-Sivashinsky equation with a shear flow. J. Evol. Equ. 21 (2021), 50795099 10.1007/s00028-021-00752-9.CrossRefGoogle Scholar
Doelman, A. and Titi, E. S.. Regularity of solutions and the convergence of the Galerkin method in the Ginzburg-Landau equation. Numer. Funct. Anal. Optim. 14 (1993), 299321 10.1080/01630569308816523.CrossRefGoogle Scholar
Feng, Y. and Mazzucato, A. L.. Global existence for the two-dimensional Kuramoto-Sivashinsky equation with advection. Comm. Partial Differ. Equ. 47 (2022), 279306 10.1080/03605302.2021.1975131.CrossRefGoogle Scholar
Ferrari, A. B. and Titi, E. S.. Gevrey regularity for nonlinear analytic parabolic equations. Comm. Partial Differ. Equ. 23 (1998), 116 10.1080/03605309808821336.CrossRefGoogle Scholar
Foias, C. and Temam, R.. Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Funct. Anal. 87 (1989), 359369 10.1016/0022-1236(89)90015-3.CrossRefGoogle Scholar
Goodman, J.. Stability of the Kuramoto-Sivashinsky and related systems. Comm. Pure Appl. Math. 47 (1994), 293306 10.1002/cpa.3160470304.CrossRefGoogle Scholar
Grujić, Z. and Kukavica, I.. Space analyticity for the Navier-Stokes and related equations with initial data in Lp. J. Funct. Anal. 152 (1998), 447466 10.1006/jfan.1997.3167.CrossRefGoogle Scholar
Kalogirou, A., Keaveny, E. E. and Papageorgiou, D. T.. An in-depth numerical study of the two-dimensional Kuramoto-Sivashinsky equation. Proc. A. 471 (2015), 10.1098/rspa.2014.0932. 20140932.Google ScholarPubMed
Koch, H. and Tataru, D.. Well-posedness for the Navier-Stokes equations. Adv. Math. 157 (2001), 2235 10.1006/aima.2000.1937.CrossRefGoogle Scholar
Kukavica, I. and Massatt, D.. On the global existence for the Kuramoto-Sivashinsky equation. J. Dynam. Differ. Equ. 35 (2023), 6985 10.1007/s10884-021-09985-1.CrossRefGoogle Scholar
Kuramoto, Y. and Tsuzuki, T.. Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 55 (1976), 356369.CrossRefGoogle Scholar
Larios, A. and Yamazaki, K.. On the well-posedness of an anisotropically-reduced two-dimensional Kuramoto-Sivashinsky equation. Phys. D. 411 (2020), 10.1016/j.physd.2020.132560.CrossRefGoogle Scholar
Lei, Z. and Lin, F.. Global mild solutions of Navier-Stokes equations. Comm. Pure Appl. Math. 64 (2011), 12971304 10.1002/cpa.20361.CrossRefGoogle Scholar
Miao, C. and Yuan, B.. Solutions to some nonlinear parabolic equations in pseudomeasure spaces. Math. Nachr. 280 (2007), 171186 10.1002/mana.200410472.CrossRefGoogle Scholar
Molinet, L.. A bounded global absorbing set for the Burgers-Sivashinsky equation in space dimension two. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), 635640 10.1016/S0764-4442(00)00224-X.CrossRefGoogle Scholar
Molinet, L.. Local dissipativity in L 2 for the Kuramoto-Sivashinsky equation in spatial dimension 2. J. Dynam. Differ. Equ. 12 (2000), 533556 10.1023/A:1026459527446.CrossRefGoogle Scholar
Nicolaenko, B., Scheurer, B. and Temam, R.. Some global dynamical properties of the Kuramoto-Sivashinsky equations: nonlinear stability and attractors. Phys. D. 16 (1985), 155183 10.1016/0167-2789(85)90056-9.CrossRefGoogle Scholar
Papageorgiou, D. T., Smyrlis, Y. -S. and Tomlin, R. J.. Optimal analyticity estimates for non-linear active-dissipative evolution equations. IMA J. Appl. Math. 87 (2022), 964984 10.1093/imamat/hxac028.CrossRefGoogle Scholar
Reed, M. and Simon, B.. Methods of Modern Mathematical Physics. II. Fourier analysis, self-adjointness. (Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975).Google Scholar
Sell, G. R. and Taboada, M.. Local dissipativity and attractors for the Kuramoto-Sivashinsky equation in thin $2{{\rm} D}$ domains. Nonlinear Anal. 18 (1992), 671687 10.1016/0362-546X(92)90006-Z.CrossRefGoogle Scholar
Sivashinsky, G. I.. Nonlinear analysis of hydrodynamic instability in laminar flames–I. Derivation of basic equations. Acta Astronaut. 4 (1977), 11771206.CrossRefGoogle Scholar
Tadmor, E.. The well-posedness of the Kuramoto-Sivashinsky equation. SIAM J. Math. Anal. 17 (1986), 884893 10.1137/0517063.CrossRefGoogle Scholar