Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T22:54:21.174Z Has data issue: false hasContentIssue false

The Euler–Maclaurin formula generated by a summation operator

Published online by Cambridge University Press:  14 November 2011

John Boris Miller
Affiliation:
Department of Mathematics, Monash University, Victoria 3168, Australia

Synopsis

A closed summation operator, whose spectrum lies within a certain region, generates a derivation and antiderivation, and an Euler–Maclaurin sum formula among these three operators.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bonsall, F. F. and Duncan, J.. Complete normed algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80 (Berlin: Springer, 1973).CrossRefGoogle Scholar
2and, E. HillePhillips, R. S.. Functional analysis and semi-groups (Providence, R.I.: Amer. Math. Soc., 1957).Google Scholar
3Miller, J. B.. The Euler–Maclaurin sum formula for an inner derivation. Aequationes Math, to appear.Google Scholar
4Miller, J. B.. The Euler–Maclaurin sum formula for a closed derivation. J. Austral. Math. Soc. Ser. A to appear.Google Scholar
5Springer, G.. Introduction to Riemann surfaces (Reading, Mass.: Addision-Wesley, 1957).Google Scholar
6Zeller-Meier, G.. Sur les automorphismes des algébres de Banach. C.R. Acad. Sci. Paris Sr A-B 264(1967), 11311132.Google Scholar