Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T16:15:04.763Z Has data issue: false hasContentIssue false

Entire solutions of Δpu = f(r, u)

Published online by Cambridge University Press:  14 November 2011

Wolfgang Walter
Affiliation:
Universität Karlsuhe, F.D.R. and Univercity of Tennessee, Knoxville, Tennessee, U.S.A.
H. Rhee
Affiliation:
State University College, Oneonta, New York, U.S.A.

Extract

Sufficient conditions are given which ensure nonexistence of spherically symmetric entire solutions of Δpu = f(u), p ≧ 2. Sufficient conditions for existence of spherically symmetric entire solutions of Δpu = f(r, u) are also given.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Haviland, E. K.. A note on unrestricted solution of the differential equation Δu = f(u). J. London Math. Soc. 26 (1951), 210214.CrossRefGoogle Scholar
2Keller, J. B.. On the solutions of Δu = f(u). Comm. Pure Appl. Math. 10 (1957), 503510.CrossRefGoogle Scholar
3Keller, J. B.. Electrohydrodynamics I. The equilibrium of a charged gas in a container. J. Rational Mech. Analysis. 5 (1956), 715724.Google Scholar
4Osserman, R.. On the inequality Δuf(u). Pacific J. Math. 7 (1957), 16411647.CrossRefGoogle Scholar
5Redheffer, R.. On the inequality Δuf(u, |grad u|). J. Math. Anal. Appl. 1 (1960), 277299.CrossRefGoogle Scholar
6Walter, W.. Uber ganze Lösungen der Differentialgleichung Δu =f(u). Jber. Deutsch. Math.-Verein. 57 (1955), 94102.Google Scholar
7Walter, W.. Ganze Lösungen der Differentialgleichung Δpu = f(u). Math. Z. 67 (1957), 3237.CrossRefGoogle Scholar
8Walter, W.. Zur Existenz ganzer Lösungen der Differentialgleichung Δpu = eu. Arch. Math. 9 (1958), 308312.CrossRefGoogle Scholar
9Wittich, H.. Ganzer Lösungen der Differentialgleichung Δu = f(u). Math. Z. 49 (1944), 579582.CrossRefGoogle Scholar