No CrossRef data available.
Article contents
Cyclicity of rigid centres on centre manifolds of three-dimensional systems
Published online by Cambridge University Press: 09 February 2023
Abstract
We work with polynomial three-dimensional rigid differential systems. Using the Lyapunov constants, we obtain lower bounds for the cyclicity of the known rigid centres on their centre manifolds. Moreover, we obtain an example of a quadratic rigid centre from which is possible to bifurcate 13 limit cycles, which is a new lower bound for three-dimensional quadratic systems.
Keywords
MSC classification
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 154 , Issue 1 , February 2024 , pp. 188 - 200
- Copyright
- Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh
References
Arakaki, L. Q. Teoria dos centros e ciclicidade de pontos de hopf para campos de vetores planares e tridimensionais. Master's thesis, Universidade Estadual Paulista (UNESP), IBILCE, 2019. https://repositorio.unesp.br/handle/11449/183069Google Scholar
Bautin, N. N.. On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type. American Mathematical Society Translations, no. 100, 1954, p. 19.Google Scholar
Buică, A., García, I. A. and Maza, S.. Existence of inverse Jacobi multipliers around Hopf points in $\mathbb {R}^3$
: emphasis on the center problem. J. Differ. Equ. 252 (2012), 6324–6336.CrossRefGoogle Scholar

Chavarriga, J. and Grau, M.. Some open problems related to 16b Hilbert problem. Sci. Ser. A Math. Sci. (N.S.) 9 (2003), 1–26.Google Scholar
Christopher, C.. Estimating limit cycle bifurcations from centers in differential equations with symbolic computation. Trends Math., pp. 23–35 (Basel: Birkhäuser, 2005).Google Scholar
Christopher, C. and Li, C.. Limit cycles of differential equations. Advanced Courses in Mathematics. CRM Barcelona (Basel: Birkhäuser Verlag, 2007).Google Scholar
Edneral, V. F., Mahdi, A., Romanovski, V. G. and Shafer, D. S.. The center problem on a center manifold in $\mathbb {R}^3$
. Nonlinear Anal. 75 (2012), 2614–2622.CrossRefGoogle Scholar

García, I. A., Maza, S. and Shafer, D. S.. Cyclicity of polynomial nondegenerate centers on center manifolds. J. Differ. Equ. 265 (2018), 5767–5808.CrossRefGoogle Scholar
García, I. A., Maza, S. and Shafer, D. S.. Center cyclicity of Lorenz, Chen and Lü systems. Nonlinear Anal. 188 (2019), 362–376.CrossRefGoogle Scholar
Gouveia, L. F. S. and Queiroz, L.. Lower bounds for the cyclicity of centers of quadratic three-dimensional systems. Preprint available at https://arxiv.org/abs/2110.13255, 2021.Google Scholar
Gouveia, L. F. S. and Torregrosa, J.. Lower bounds for the local cyclicity of centers using high order developments and parallelization. J. Differ. Equ. 271 (2021), 447–479.CrossRefGoogle Scholar
Kelley, A.. The stable, center-stable, center, center-unstable, unstable manifolds. J. Differ. Equ. 3 (1967), 546–570.CrossRefGoogle Scholar
Li, J.. Hilbert's 16th problem and bifurcations of planar polynomial vector fields. Int. J. Bifurcation Chaos Appl. Sci. Eng. 13 (2003), 47–106.CrossRefGoogle Scholar
Mahdi, A.. Center problem for third-order ODEs. Int. J. Bifurcation Chaos Appl. Sci. Eng. 23 (2013), 1350078.CrossRefGoogle ScholarPubMed
Mahdi, A., Pessoa, C. and Hauenstein, J. D.. A hybrid symbolic-numerical approach to the center-focus problem. J. Symb. Comput. 82 (2017), 57–73.CrossRefGoogle Scholar
Mahdi, A., Pessoa, C. and Ribeiro, J. D.. Rigid centres on the center manifold of tridimensional differential systems. Proc. R. Soc. Edinburgh Sect. A: Math. 152 (2021), 1–23.Google Scholar
Mahdi, A., Pessoa, C. and Shafer, D. S.. Centers on center manifolds in the Lü system. Phys. Lett. A 375 (2011), 3509–3511.CrossRefGoogle Scholar
Romanovski, V. G. and Shafer, D. S.. The center and cyclicity problems: A computational algebra approach (Boston, MA: Birkhäuser Boston, Ltd., 2009).Google Scholar
Sánchez-Sánchez, I. and Torregrosa, J.. Hopf bifurcation in 3-dimensional polynomial vector fields. Commun. Nonlinear Sci. Numer. Simul. 105 (2022), 106068.CrossRefGoogle Scholar
Sang, B., Ferčec, B. and Wang, Q.-L.. Limit cycles bifurcated from a center in a three dimensional system. Electron. J. Differ. Equ. 2016 (2016), 1–11.Google Scholar
Sijbrand, J.. Properties of center manifolds. Trans. Am. Math. Soc. 289 (1985), 431–469.CrossRefGoogle Scholar
Yu, P. and Han, M.. Ten limit cycles around a center-type singular point in a 3-D quadratic system with quadratic perturbation. Appl. Math. Lett. 44 (2015), 17–20.CrossRefGoogle Scholar
Żoładek, H.. Eleven small limit cycles in a cubic vector field. Nonlinearity 8 (1995), 843–860.CrossRefGoogle Scholar