Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T22:32:59.211Z Has data issue: false hasContentIssue false

Critical behaviour of nonlinear elliptic boundary value problems suggested by exothermic reactions

Published online by Cambridge University Press:  14 November 2011

Henning Wiebers
Affiliation:
Institut für Angewandte Mathematik, Universität Hamburg, 2000 Hamburg 13, West Germany

Synopsis

We consider a class of semilinear elliptic boundary value problems depending on a parameter, which arise in the theory of combustion. Based on the results in another paper by the same author, a rigorous quantitative connection is shown between the solution set of the boundary value problem and that of a simple scalar equation (the Semenov approximation).

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Amann, H.. Multiple positive fixed points of asymptotically linear maps. J. Fund. Anal. 17 (1974), 174213.CrossRefGoogle Scholar
2Amann, H.. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18 (1976), 620709.CrossRefGoogle Scholar
3Aris, R.. The mathematical theory of diffusion and reaction engineering 1 (Oxford: Clarendon Press, 1975).Google Scholar
4Bazley, N. W. and Wake, G. C.. The dependence of criticality on activation energy when reactant consumption is neglected. Combust. Flame 33 (1978), 161168.CrossRefGoogle Scholar
5Boddington, T., Gray, P.F.R.S. and Robinson, C.. Thermal explosions and the disappearance of criticality at small activation energies: Exact results for the slab. Proc. Roy. Soc. London Ser. A 368 (1979), 441461.Google Scholar
6Boddington, T., Gray, P.F.R.S. and Wake, G. C.. Criteria for thermal explosions with and without reactant consumption. Proc. Roy. Soc. London Ser. A 357 (1977), 403422.Google Scholar
7Brown, K. J., A, M. N.. Ibrahim and R. Shivaji. S-shaped bifurcation curves. Nonlinear Anal. 5 (1981), 475486.CrossRefGoogle Scholar
8Ju. Fradkin, L., and Wake, G. C.. The critical explosion parameter in the theory of thermalignition. J. Inst. Math. Appl. 20 (1977), 471–484.Google Scholar
9Frank-Kamenetskii, D. A.. Diffusion and heat transfer in chemical kinetics (New York: Plenum Press, 1969).Google Scholar
10Gidas, B., Ni, W. M. and Nirenberg, L.. Symmetry and related properties by the maximum principle. Comm. Math. Phys. 68 (1979), 209–243.Google Scholar
11Parter, S. V.. Solutions of a differential equation in chemical reactor processes. SLAM J. Appl. Math. 26 (1974), 687715.CrossRefGoogle Scholar
12Parter, S. V., Stein, M. L. and Stein, P. R.. On the multiplicity of solutions of a differential equation arising in chemical reactor theory. Stud. Appl. Math. 54 (1975), 293314.CrossRefGoogle Scholar
13Spence, A. and Werner, B.. Nonsimple turning points and cusps. IMA J. Numer. Anal. 2 (1982), 413427.CrossRefGoogle Scholar
14Voß, H.. Lower bounds for critical parameters in exothermic reactions. Internat. Ser. Numer. Math. 54, 177184 (Basle: Birkhauser, 1980).Google Scholar
15Wiebers, H.. S-formige Verzweigungsdiagramme bei elliptischen Randwertaufgaben mit Anwendungen auf exotherme Reaktionen. Ph.D. thesis, Hamburg 1984.Google Scholar
16Wiebers, H.. S-shaped bifurcation curves of nonlinear boundary value problems. Math. Ann. 270 (1985), 555570.CrossRefGoogle Scholar
17Wiebers, H.. A uniqueness result for a nonlinear two point boundary value problem. Nonlinear Anal, submitted.Google Scholar