Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T02:20:12.189Z Has data issue: false hasContentIssue false

Combined effects in mixed local–nonlocal stationary problems

Published online by Cambridge University Press:  04 September 2023

Rakesh Arora
Affiliation:
Department of Mathematical Sciences, Indian Institute of Technology Varanasi (IIT-BHU), Uttar Pradesh 221005, India ([email protected], [email protected])
Vicenţiu D. Rădulescu
Affiliation:
Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, Brno 61600, Czech Republic Simion Stoilow Institute of Mathematics of the Romanian Academy, Calea Griviţei 21, 010702 Bucharest, Romania School of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China Department of Mathematics, University of Craiova, Street A.I. Cuza 13, 200585 Craiova, Romania ([email protected])

Abstract

In this work, we study an elliptic problem involving an operator of mixed order with both local and nonlocal aspects, and in either the presence or the absence of a singular nonlinearity. We investigate existence or nonexistence properties, power- and exponential-type Sobolev regularity results, and the boundary behaviour of the weak solution, in the light of the interplay between the summability of the datum and the power exponent in singular nonlinearities.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abatangelo, N. and Cozzi, M.. An elliptic boundary value problem with fractional nonlinearity. SIAM J. Math. Anal. 53 (2021), 35773601.CrossRefGoogle Scholar
Abatangelo, N., Gómez-Castro, D. and Vázquez, J. L.. Singular boundary behaviour and large solutions for fractional elliptic equations. J. London Math. Soc. 107 (2023), 568615.CrossRefGoogle ScholarPubMed
Abdellaoui, B., Medina, M., Peral, I and Primo, A.. The effect of the Hardy potential in some Calderón–Zygmund properties for the fractional Laplacian. J. Differ. Equ. 260 (2016), 81608206.CrossRefGoogle Scholar
Adimurthi, , Giacomoni, J. and Santra, S.. Positive solutions to a fractional equation with singular nonlinearity. J. Differ. Equ. 265 (2018), 11911226.CrossRefGoogle Scholar
Arcoya, D. and Moreno-Mérida, L.. Multiplicity of solutions for a Dirichlet problem with a strongly singular nonlinearity. Nonlinear Anal. 95 (2014), 281291.CrossRefGoogle Scholar
Arora, R.. Multiplicity results for nonhomogeneous elliptic equations with singular nonlinearities. Commun. Pure Appl. 21 (2022), 22532269.CrossRefGoogle Scholar
Arora, R., Giacomoni, J., Goel, D. and Sreenadh, K.. Positive solutions of 1-D half-Laplacian equation with singular exponential nonlinearity. Asymptot. Anal. 118 (2020), 134.Google Scholar
Arora, R., Giacomoni, J. and Warnault, G.. Regularity results for a class of nonlinear fractional Laplacian and singular problems. Nonlinear Differ. Equ. Appl. 28 (2021), 30.CrossRefGoogle Scholar
Arora, R., Rădulescu, V. D. and Nguyen, P. T.. A large class of nonlocal elliptic equations with singular nonlinearities. Preprint arXiv:2211.06634, 2022.Google Scholar
Barrios, B., De Bonis, I., Medina, M. and Peral, I.. Semilinear problems for the fractional Laplacian with a singular nonlinearity. Open Math. 13 (2015), 390407.CrossRefGoogle Scholar
Biagi, S., Dipierro, S., Valdinoci, E. and Vecchi, E.. Mixed local and nonlocal elliptic operators: regularity and maximum principles. Commun. Partial Differ. Equ. 47 (2022), 585629.CrossRefGoogle Scholar
Biagi, S., Dipierro, S., Valdinoci, E. and Vecchi, E.. A Faber–Krahn inequality for mixed local and nonlocal operators. J. d'Anal. Math. (2023), 143.Google Scholar
Biagi, S., Dipierro, S., Valdinoci, E. and Vecchi, E.. Semilinear elliptic equations involving mixed local and nonlocal operators. Proc. R. Soc. Edinb. Sect. A 151 (2021), 16111641.CrossRefGoogle Scholar
Biagi, S., Mugnai, D. and Vecchi, E.. A Brezis–Oswald approach for mixed local and nonlocal operator. Commun. Contemp. Math. (2022), 2250057.CrossRefGoogle Scholar
Boccardo, L. and Casado-Díaz, J.. Some properties of solutions of some semilinear elliptic singular problems and applications to the G-convergence. Asymptot. Anal. 86 (2014), 115.Google Scholar
Boccardo, L. and Orsina, L.. Semilinear elliptic equations with singular nonlinearities. Calc. Var. 37 (2010), 363380.CrossRefGoogle Scholar
Bonforte, M., Figalli, A. and Vázquez, J. L.. Sharp boundary behaviour of solutions to semilinear nonlocal elliptic equations. Calc. Var. 57 (2018), 34.CrossRefGoogle Scholar
Brandolini, B., Chiacchio, F. and Trombetti, C.. Symmetrization for singular semilinear elliptic equations. Ann. Mat. Pura Appl. 193 (2014), 389404.CrossRefGoogle Scholar
Brezis, H.. Functional analysis, Sobolev spaces and partial differential equations. Universitext (New York: Springer, 2011).CrossRefGoogle Scholar
Canino, A. and Degiovanni, M.. A variational approach to a class of singular semilinear elliptic equations. J. Convex Anal. 11 (2004), 147162.Google Scholar
Canino, A., Montoro, L., Sciunzi, B. and Squassina, M.. Nonlocal problems with singular nonlinearity. Bull. Sci. Math. 141 (2017), 223250.CrossRefGoogle Scholar
Canino, A. and Sciunzi, B.. A uniqueness result for some singular semilinear elliptic equations. Commun. Contemp. Math. 18 (2016), 1550084.CrossRefGoogle Scholar
Canino, A., Sciunzi, B. and Trombetta, A.. Existence and uniqueness for $p$-Laplace equations involving singular nonlinearities. Nonlinear Differ. Equ. Appl. 23 (2016), 8.CrossRefGoogle Scholar
Chan, H., Gómez-Castro, D. and Vázquez, J. L.. Blow-up phenomena in nonlocal eigenvalue problems: when theories of $L^1$ and $L^2$ meet. J. Funct. Anal. 280 (2021), 108845.CrossRefGoogle Scholar
Chen, X., Hambrock, R. and Lou, Y.. Evolution of conditional dispersal: a reaction diffusion–advection model. J. Math. Biol. 57 (2008), 361386.CrossRefGoogle ScholarPubMed
Chen, Z.-Q., Kim, P., Song, R. and Vondraček, Z.. Sharp Green function estimates for $\Delta + \Delta ^{{\alpha }/2}$ in $C^ 1,1$ open sets and their applications. Ill. J. Math. 54 (2012), 9811024.Google Scholar
Chen, Z.-Q., Kim, P., Song, R. and Vondraček, Z.. Boundary Harnack principle for $\Delta + \Delta ^{{\alpha }/2}$. Trans. Am. Math. Soc. 364 (2012), 41694205.CrossRefGoogle Scholar
Coclite, M. M. and Palmieri, G.. On a singular nonlinear Dirichlet problem. Commun. Partial Differ. Equ. 14 (1989), 13151327.CrossRefGoogle Scholar
Crandall, M. G., Rabinowitz, P. H. and Tartar, L.. On a Dirichlet problem with a singular nonlinearity. Commun. Partial Differ. Equ. 2 (1977), 193222.CrossRefGoogle Scholar
Díaz, J. I., Morel, J. M. and Oswald, L.. An elliptic equation with singular nonlinearity. Commun. Partial Differ. Equ. 12 (1987), 13331344.CrossRefGoogle Scholar
Fulks, W. and Maybee, J. S.. A singular nonlinear equation. Osaka J. Math. 12 (1960), 119.Google Scholar
Ghergu, M. and Rădulescu, V.. Singular elliptic problems: bifurcation and asymptotic analysis. Oxford Lecture Series in Mathematics and its Applications, vol. 37 (Oxford: The Clarendon Press, Oxford University Press, 2008).Google Scholar
Gomes, S. M.. On a singular nonlinear elliptic problem. SIAM J. Math. Anal. 6 (1986), 13591369.CrossRefGoogle Scholar
Hernández, J. and Mancebo, F. J.. Singular elliptic and parabolic equations. Handb. Differ. Equ. 3 (2006), 317400.Google Scholar
Garain, P. and Ukhlov, A.. Mixed local and nonlocal Sobolev inequalities with extremal and associated quasilinear singular elliptic problems. Nonlinear Anal. 223 (2022), 113022.CrossRefGoogle Scholar
Garain, P. and Kinnunen, J.. On the regularity theory for mixed local and nonlocal quasilinear elliptic equations. Trans. Am. Math. Soc. 375 (2022), 53935423.Google Scholar
Garain, P. and Lindgren, E.. Higher Hölder regularity for mixed local and nonlocal degenerate elliptic equations. Calc. Var. 62 (2023), 67.CrossRefGoogle Scholar
Giacomoni, J., Mukherjee, T. and Sreenadh, K.. Positive solutions of fractional elliptic equation with critical and singular nonlinearity. Adv. Nonlinear Anal. 6 (2017), 327354.CrossRefGoogle Scholar
Kao, C. Y., Lou, Y. and Shen, W.. Evolution of mixed dispersal in periodic environments. Discrete Contin. Dyn. Syst. Ser. B 17 (2012), 20472072.CrossRefGoogle Scholar
Lazer, A. C. and McKenna, P. J.. On a singular nonlinear elliptic boundary-value problem. Proc. Am. Math. Soc. 111 (1991), 721730.CrossRefGoogle Scholar
Lindgren, E. and Lindqvist, P.. Fractional eigenvalues. Calc. Var. Partial Differ. Equ. 49 (2014), 795826.CrossRefGoogle Scholar
Massaccesi, A. and Valdinoci, E.. Is a nonlocal diffusion strategy convenient for biological populations in competition?. J. Math. Biol. 74 (2017), 113147.CrossRefGoogle ScholarPubMed
Molica Bisci, G., Rădulescu, V. D. and Servadei, R.. Variational methods for nonlocal fractional problems, encyclopedia of mathematics and its applications, vol. 162 (Cambridge University Press: Cambridge, 2016).CrossRefGoogle Scholar
Nachman, A. and Callegari, A.. A nonlinear singular boundary value problem in the theory of pseudoplastic fluids. SIAM J. Appl. Math. 28 (1986), 271281.Google Scholar
Oliva, F. and Petitta, F.. Finite and infinite energy solutions of singular elliptic problems: existence and uniqueness. J. Differ. Equ. 264 (2018), 311340.CrossRefGoogle Scholar
Di Nezza, E., Palatucci, G. and Valdinoci, E.. Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012), 521573.CrossRefGoogle Scholar
Stampacchia, G.. Le probléme de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15 (1965), 189258.CrossRefGoogle Scholar
Stuart, C. A.. Existence theorems for a class of nonlinear integral equations. Math. Z. 137 (1974), 4966.CrossRefGoogle Scholar
Stuart, C. A.. Existence and approximation of solutions of nonlinear elliptic equations. Math. Z. 147 (1976), 5363.CrossRefGoogle Scholar
Yijing, S. and Zhang, D.. The role of the power 3 for elliptic equations with negative exponents. Calc. Var. 49 (2014), 909922.CrossRefGoogle Scholar
Youssfi, A. and Mahmoud, G. O. M.. Nonlocal semilinear elliptic problems with singular nonlinearity. Calc. Var. 60 (2021), 153.CrossRefGoogle Scholar
Zhang, Z. and Cheng, J.. Existence and optimal estimates of solutions for singular nonlinear Dirichlet problem. Nonlinear Anal. 57 (2004), 473484.CrossRefGoogle Scholar