Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T22:44:39.107Z Has data issue: false hasContentIssue false

Chapter 4 of Ramanujan's Second Notebook

Published online by Cambridge University Press:  14 November 2011

Bruce C. Berndt
Affiliation:
Department of Mathematics, University of Illinois, Urbana, Illinois 61801, U.S.A.
B. M. Wilson
Affiliation:
Department of Mathematics, University of Illinois, Urbana, Illinois 61801, U.S.A.

Synopsis

The purpose of this paper is to examine the content of Chapter 4 of Ramanujan's second notebook. The first half of this chapter is on iterates of the exponential function. The second half focuses upon an interesting formal procedure which Ramanujan, in particular, used in the theory of integral transforms.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Abramowitz, M. and Stegun, I. A. (eds). Handbook of mathematical functions (New York: Dover, 1965).Google Scholar
2Becker, H. W. and Riordan, J.. The arithmetic of Bell and Stirling numbers. Amer. J. Math. 70 (1948), 385391.CrossRefGoogle Scholar
3Bell, E. T.. Exponential polynomials. Ann. of Math. 35 (1934), 258277.CrossRefGoogle Scholar
4Bell, E. T.. The iterated exponential integers. Ann. of Math. 39 (1938), 539557.CrossRefGoogle Scholar
5Berndt, B. C.. Chapter 14 of Ramanujan's second notebook. Enseignement Math. 26 (1980), 165.Google Scholar
6Berndt, B. C., Evans, R. J. and Wilson, B. M.. Chapter 3 of Ramanujan's second notebook. Advances in Math., to appear.Google Scholar
7Carlitz, L.. Congruences for generalized Bell and Stirling numbers. Duke Math. J. 22 (1955), 193205.CrossRefGoogle Scholar
8Comtet, L.. Advanced combinatorics (Dordrecht: Reidel, 1974).CrossRefGoogle Scholar
9Edwards, H. M.. Riemann's zeta function (New York: Academic, 1974).Google Scholar
10Ginsburg, J.. Iterated exponentials. Scripta Math. 11 (1945), 340353.Google Scholar
11Gradshteyn, I. S. and Ryzhik, I. M.. Table of integrals, series, and products, 4th edn (New York: Academic, 1965).Google Scholar
12Hardy, G. H.. Ramanujan and the theory of transforms. Quart. J. Math. 8 (1937), 245254.CrossRefGoogle Scholar
13Hardy, G. H.. Divergent series (Oxford: Clarendon Press, 1949).Google Scholar
14Hardy, G. H.. Ramanujan (New York: Chelsea, 1978).Google Scholar
15Hardy, G. H.. Collected papers, vol. VII (Oxford Univ. Press, 1979).Google Scholar
16Henrichi, P.. Applied and computational complex analysis, vol. 2 (New York: Wiley, 1977).Google Scholar
17Hill, J. M., Laird, P. G. and Cerone, P.. Mellin-type integral equations for solutions of differential-difference equations. Utilitas Math. 15 (1979), 129141.Google Scholar
18Lindelöf, E.. Le calcul des résidus (New York: Chelsea, 1947).Google Scholar
19Ramanujan, S.. Some definite integrals. Messenger of Math. 44 (1915), 1018.Google Scholar
20Ramanujan, S.. Collected papers (New York: Chelsea, 1962).Google Scholar
21Ramanujan, S.. Notebooks (2 vols) (Bombay: Tata Institute of Fundamental Research, 1957).Google Scholar
22Stanley, R. P.. Generating functions. In Studies in Combinatorics, 100141, Rota, G. C. (ed.) (Washington DC: Math. Assoc. Amer., 1978).Google Scholar
23Titchmarsh, E. C.. Introduction to the theory of Fourier integrals, 2nd edn (Oxford: Clarendon Press, 1948).Google Scholar
24Turnbull, H. W.. Bertram Martin Wilson, M.A., D.Sc. Proc. Roy. Soc. Edinburgh 55 (1936), 176177.Google Scholar
25Wall, H. S.. Analytic theory of continued fractions (New York: van Nostrand, 1948).Google Scholar
26Whittaker, E. T. and Watson, G. N.. A course of modem analysis, 4th edn (Cambridge Univ. Press, 1962).Google Scholar