Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-05T02:32:51.243Z Has data issue: false hasContentIssue false

C*-algebras of Clifford semigroups

Published online by Cambridge University Press:  14 November 2011

John Duncan
Affiliation:
Department of Mathematical Sciences, University of Arkansas, Fayetteville, AR 72701, U.S.A.
A.L.T. Paterson
Affiliation:
Department of Mathematics, University of Aberdeen, Aberdeen AB9 2TY, Scotland, U.K.

Synopsis

We investigate algebras associated with a (discrete) Clifford semigroup S =∪ {Ge: e ∈ E{. We show that the representation theory for S is determined by an enveloping Clifford semigroup UC(S) =∪ {Gx: x ∈ X} where X is the filter completion of the semilattice E. We describe the representation theory in terms of both disintegration theory and sheaf theory.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bowman, T.. A construction principle and compact Clifford semigroups. Semigroup Forum 2 (1971), 343353.CrossRefGoogle Scholar
2Dauns, J.. Enveloping W*-algebras. Rocky Mountain J. Math. 8 (1978), 589626.CrossRefGoogle Scholar
3Diximier, J.. Von Neumann algebras (Amsterdam: North Holland Mathematical Library, 1981).Google Scholar
4Duncan, J. and Paterson, A. L. T.. C*-algebras of inverse semigroups. Proc. Edinburgh Math. Soc. 28 (1985), 4158.CrossRefGoogle Scholar
5Dunkl, C. F. and Ramirez, D. E.. Representations of commutative semitopological semigroups, Lecture Notes in Mathematics 435 (New York: Springer Verlag, 1975).Google Scholar
6Gierz, G. et al. A compendium of continuous lattices (New York: Springer, 1980).CrossRefGoogle Scholar
7Hofmann, K. H.. The duality of compact semigroups and C*-bigebras, Lecture Notes in Mathematics 129 (New York: Springer, 1970).CrossRefGoogle Scholar
8Hofmann, K. H.. Representations of algebras by continuous sections. Bull. Amer. Math. Soc. 78 (1972), 291373.CrossRefGoogle Scholar
9Hofmann, K. R., Mislove, M. and Stralka, A.. The Pontryagin duality of compact 0-dimensional semilattices and its applications, Lecture Notes in Mathematics 396 (Berlin: Springer, 1974).CrossRefGoogle Scholar
10Howie, J. M.. An introduction to semigroup theory (London: Academic Press, 1976).Google Scholar
11Kirillov, A. A.. Elements of the theory of representations (Berlin: Springer, 1976).CrossRefGoogle Scholar
12Paterson, A. L. T.. Weak containment and Clifford semigroups. Proc. Roy. Soc. Edinburgh Sect. A 81 (1978), 2330.CrossRefGoogle Scholar
13Paterson, A. L. T.. An integral representation of positive definite functions on a Clifford semigroup. Math. Ann. 234 (1978), 125138.CrossRefGoogle Scholar
14Pierce, R. S.. Modules over commutative rings. Mem. Amer. Math. Soc. 70 (1970).Google Scholar
15Schein, B. M.. Completions, translational hulls and ideal extensions of inverse semigroups. Czechoslovak Math. J. 23(98), (1973), 575609.CrossRefGoogle Scholar
16Thoma, E.. Ein Characterisierung diskreter Gruppen vom Type I. Invent. Math. 6 (1968), 190196.CrossRefGoogle Scholar