Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-07T23:32:37.620Z Has data issue: false hasContentIssue false

Boundary regularity and normal derivatives of logarithmic potentials

Published online by Cambridge University Press:  14 November 2011

J. Král
Affiliation:
Mathematical Institute, Czechoslovak Academy of Sciences, Prague, Czechoslovakia

Synopsis

We consider the weak Neumann problem for logarithmic potentials in plane domains. We prove that this problem can be treated by the Fredholm–Radon method if and only if the boundary of the corresponding domain is formed by finitely many curves fulfilling specified regularity conditions.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Brothers, J. E.. Stokes' theorem. Amer. J. Math. 92 (1970), 657670.CrossRefGoogle Scholar
2Burago, Yu. D. and Maz'ja, V. G.. Potential theory and function theory for irregular regions (Leningrad: V. A. Steklov Mathematical Institute, Seminars in Mathematics, vol. 3, 1967).Google Scholar
3Daniljuk, I. I.. Nonregular boundary value problems in the plane (Moscow: Nauka, 1975).Google Scholar
4David, G.. Opérateurs intégraux singuliers sur certaines courbes du plan complexe. Ann. Sci. École norm. Sup. (4) 17 (1984), 157189.CrossRefGoogle Scholar
5Giorgi, E. De. Su una teoria generale della misura (r – l)-dimensionale in uno spazio and r dimensioni. Ann. Mat. Pura Appl. (4) 36 (1954), 191213.CrossRefGoogle Scholar
6Giorgi, E. De. Nuovi teoremi relativi alle misure (r – l)-dimensionali in uno spazio and r dimensioni. Ricerche Mat. 4 (1955), 95113.Google Scholar
7Dont, M.. Non-tangential limits of the double layer potentials. Časopis pest. mat. 97 (1972), 231258.CrossRefGoogle Scholar
8Federer, H.. The Gauss-Green theorem. Trans. Amer. Math. Soc. 58 (1945), 4476.CrossRefGoogle Scholar
9Federer, H.. A note on the Gauss-Green theorem. Proc. Amer. Math. Soc. 9 (1958), 447451.CrossRefGoogle Scholar
10Král, J.The Fredholm radius of an operator in potential theory I, II. Czechoslovak Math. J. 15 (1965), 454473, 565–588.CrossRefGoogle Scholar
11Král, J.. The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511547.CrossRefGoogle Scholar
12Král, J.. Flows of heat and the Fourier problem. Czechoslovak Math. J. 20 (1970), 556598.CrossRefGoogle Scholar
13Král, J. Integral operators in potential theory. Lecture Notes in Mathematics 823 (Berlin: Springer, 1980).Google Scholar
14Mařík, J.. The surface integral. Czechoslovak Math. J. 6 (1956), 522558.CrossRefGoogle Scholar
15Miranda, M.. Distribuzioni aventi derivate misure, Insiemi di perimetro localmente finite Ann. Scuola norm. Sup. Pisa Cl. Sci. (3) 18 (1964), 2756.Google Scholar
16Radon, J.. Uber die Randwertaufgaben beim logarithmischen Potential. Sitzungsber. Akad. Wiss. Wien (2a) 128 (1919), 11231167.Google Scholar
17Riesz, F. and Sz.-Nagy, B., Leçons d'Analyse Fonctionnelle (Budapest: Akadémiai Kiadó, 1952).Google Scholar
18Štulc, J. and Veselý, J.Connection of cyclic and radial variations of a path with its length and bend. Časopis Pěst. Mat. 93 (1968), 80116.CrossRefGoogle Scholar
19Yosida, K.. Functional Analysis (New York: Academic Press, 1965).Google Scholar
20Young, L. C.. A theory of boundary values. Proc. London Math. Soc. (3) 14A (1965), 300314.CrossRefGoogle Scholar
21Zinsmeister, M.. Domaines de Lavrentiev (Orsay: Publications mathgmatiques 03, 1985).Google Scholar