Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T22:29:29.089Z Has data issue: false hasContentIssue false

Bloch waves and multiparameter spectral theory

Published online by Cambridge University Press:  14 November 2011

B. P. Rynne
Affiliation:
Department of Mathematical Sciences, University of Dundee
B. D. Sleeman
Affiliation:
Department of Mathematical Sciences, University of Dundee

Synopsis

We study the spectral theory of a multiparameter system of periodic Schrödinger operators. Bloch waves are generalized eigenfunctions of these operators and are used to give eigenfunction expansion theorems and to derive some properties of the spectrum of the system.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Binding, P.. Left definite multiparameter eigenvalue problems. Trans. Amer. Math. Soc. 272 (1982), 475486.Google Scholar
2Cartan, H.. Variétés analytiques-réelles et variété analytiques-complexes. Bull. Soc. Math. France 85 (1957), 77100.CrossRefGoogle Scholar
3Cracknell, A. P. and Wong, K. C.. The Fermi Surface (Oxford: Clarendon Press, 1973).Google Scholar
4Dieudonné, J.. Foundations of Modern Analysis (London: Academic Press, 1969).Google Scholar
5Dunford, N. and Schwartz, J. T.. Linear Operators I (New York: Interscience, 1958).Google Scholar
6Eastham, M. S. P.. The Spectral Theory of Periodic Differential Equations (Edinburgh: Scottish Academic Press, 1973).Google Scholar
7Kato, T.. Perturbation Theory for Linear Operators (New York: Springer-Verlag, 1976).Google Scholar
8Lions, J. L. and , E. Magenes. Non-homogeneous Boundary Value Problems and Applications I (New York: Springer, 1972).Google Scholar
9Odeh, F. and Keller, J. B.. Partial differential equations with periodic coefficients and Bloch waves in crystals. J. Math. Phys. 5 (1964), 14991504.CrossRefGoogle Scholar
10Sleeman, B. D.. Multiparameter Spectral Theory in Hilbert space (London: Pitman, 1978).Google Scholar
11Smithies, F.. Integral Equations (London: Cambridge University Press, 1958).Google Scholar
12Whitney, H.. Complex Analytic Varieties (Reading, Mass.: Addison Wesley, 1972).Google Scholar
13Wilcox, C. H.. Theory of Bloch waves. J. Analyse Math. 33 (1978), 146167.CrossRefGoogle Scholar
14Wilcox, C. H.. Measurable eigenvectors for Hermitian matrix-valued polynomials. J. Math, Anal. Appl. 40 (1972), 1219.CrossRefGoogle Scholar
15Ziman, J. M., Principles of the Theory of Solids (Cambridge University Press, 1972).Google Scholar