Published online by Cambridge University Press: 12 July 2007
Let R be a Cohen–Macaulay local ring, and let I ⊂ R be an ideal with minimal reduction J. In this paper we attach to the pair (I, J) a non-standard bigraded module ΣI, J. The study of the bigraded Hilbert function of ΣI, J allows us to prove an improved version of Wang's conjecture and a weak version of Sally's conjecture, both on the depth of the associated graded ring grI(R). The module ΣI, J can be considered as a refinement of the Sally module introduced previously by Vasconcelos.