Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T10:15:13.974Z Has data issue: false hasContentIssue false

Associated Laguerre and Hermite polynomials

Published online by Cambridge University Press:  14 November 2011

Richard Askey
Affiliation:
Mathematics Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, U.S.A.
Jet Wimp
Affiliation:
Department of Mathematical Sciences, Drexel University, Philadelphia, Pennsylvania 19104, U.S.A.

Synopsis

Explicit orthogonality relations are found for the associated Laguerre and Hermite polynomials. One consequence is the construction of the [n − 1/n] Padé approximation to Ψ(a + 1, b; x)/Ψ(a, b; x), where Ψ(a, b; x) is the second solution to the confluent hypergeometric differential equation that does not grow rapidly at infinity.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Allen, G. D., Chui, C. K., Madych, W. R., Narcowich, F. J. and Smith, P. W.. Padé approximation of Stieltjes series. J. Approx. Theory 14 (1975), 302316.CrossRefGoogle Scholar
2Askey, R. and Ismail, M.. Recurrence relations, continued fractions and orthogonal polynomials. Mem. Amer. Math. Soc, to appear.Google Scholar
3Askey, R. and Wilson, J.. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc., to appear.Google Scholar
4Bailey, W. N.. Generalized Hypergeometric Series (Cambridge, 1935; reprinted Stechert-Hafner, New York, 1964).Google Scholar
5Baker, G. A. and Graves-Morris, P.. Padé Approximants, Part I; Basic Theory. Encyclopedia of Mathematics and Its Applications, vol. 13 (Reading, Mass.: Addison-Wesley, 1981).Google Scholar
6Bustoz, J. and Ismail, M.. The associated ultraspherical polynomials and their q-analogues. Canad. J. Math. 34 (1982), 718736.CrossRefGoogle Scholar
7Chihara, T. S.. Chain sequences and orthogonal polynomials. Trans. Amer. Math. Soc. 104 (1962), 116.CrossRefGoogle Scholar
8Chihara, T. S.. Introduction to Orthogonal Polynomials (New York: Gordon and Breach, 1978).Google Scholar
9Erdélyi, A.. Some confluent hypergeometric functions of two variables. Proc. Roy. Soc. Edinburgh 60 (1940), 344361.CrossRefGoogle Scholar
10Erdélyi, A.et id. Higher Transcendental Functions, vol. I (New York: McGraw-Hill, 1953).Google Scholar
11Erdélyi, A.et id. Higher Transcendental Functions, vol. II (New York: McGraw-Hill, 1953).Google Scholar
12Feldheim, E.. Akuni risultati sulla funzioni di Whittaker e del cilindro parabolico. Atti Accad. Sci. Torino 76 (1941), 541555.Google Scholar
13.Higgins, J. R.. Completeness and basis properties of sets of special functions (Cambridge: Cambridge University Press, 1977).CrossRefGoogle Scholar
14Karlin, S. and McGregor, I. L.. The differential equations of birth-and-death processes, and the Stieltjes moment problem. Trans. Amer. Math. Soc. 85 (1957), 489546.CrossRefGoogle Scholar
15Luke, Y. L.. The Special Functions and Their Approximations, vol. 1 (New York: Academic Press, 1969).Google Scholar
16Luke, Y. L.. The Special Functions and Their Approximations, vol. 2 (New York: Academic Press, 1969).Google Scholar
17Markov, A.. Differenzenrechnung (Leipzig, 1896).Google Scholar
18Meixner, J.. Orthogonale Polynomsysteme mit einem besonderen Gestalt der erzeugenden Funktion. J. London Math. Soc. 9 (1934), 613.CrossRefGoogle Scholar
19Oberhettinger, F.. Tabellen zur Fourier Transformation (Berlin: Springer, 1957).CrossRefGoogle Scholar
20Palama, G.. Relazioni integrali tra le funzioni d'Hermite e di Laguerre di prima e seconda specie, e su dei polinomi ad esse associati. Riv. Mat. Univ. Parma 4 (1953), 105122.Google Scholar
21Palama, G.. Polinomi piii generali si altri classici e dei loro associati, e relazioni tra essi. Funzioni di seconda specie. Riv. Mat. Univ. Parma 4 (1953), 363386.Google Scholar
22Palama, G.. Relazioni tra i Polinomi associati alii funzioni di Laguerre e di Hermite. Bol. Un. Mat. Ital. (3) 9 (1954), 6466.Google Scholar
23Pollaczek, F.. Sur une famille de polynômes orthogonaux qui contient les polynômes d'Hermite et de Laguerre comme cas limites. C.R. Acad. Sci. Paris 230 (1950), 15631565.Google Scholar
24Pollaczek, F.. Sur une famille de polynomes orthogonaux à quatre parametres. C.R. Acad. Sci. Paris 230 (1950), 22542256.Google Scholar
25Pollaczek, F.. Sur une généralisation des polynomes de Jacobi. (Mémor. Sci. Math. 131) (Paris: Gauthier-Villars, 1956).Google Scholar
26Slater, L. J.. Confluent Hypergeometric Functions (Cambridge: Cambridge Univ. Press, 1960).Google Scholar
27Stieltjes, T. J..Recherche sur les fractions continues. Ann. Fac. Sci. Toulouse 8 (1894), Jl-122; 9 (1895), Al-47; Oeuvres, vol. 2, 398566.CrossRefGoogle Scholar
28Szegö, G.. Orthogonal Polynomials. Amer. Math. Soc. Colloq. Publ. 23, 4th edn. (Providence, R.I.: Amer. Math. Soc., 1975).Google Scholar
29Szego, G.. Collected Papers, vol. 3 (Boston: Birkhäuser, 1982).Google Scholar
30Toscano, L.. Polinomi associati a polinomi classici. Riv. Mat. Univ. Parma 4 (1953), 387402.Google Scholar
31Uspensky, J. V.. On the convergence of quadrature formulas related to an infinite interval. Trans. Amer. Math. Soc. 30 (1928), 542559.CrossRefGoogle Scholar