Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T13:35:06.648Z Has data issue: false hasContentIssue false

An elliptic boundary value problem for strongly non-linear equations in unbounded domains

Published online by Cambridge University Press:  14 February 2012

Vesa Mustonen
Affiliation:
Department of Mathematics, University of Oulu, Finland, and Mathematics Division, University of Sussex

Synopsis

The existence of a variational solution is shown for the strongly non-linear elliptic boundary value problem in unbounded domains. The proof is a generalisation to Orlicz-Sobolev space setting of the idea introduced in [15] for the equations involving polynomial non-linearities only.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Adams, R. A.. Sobolev spaces (London: Academic Press, 1975).Google Scholar
2Agmon, S.. Lectures on elliptic boundary value problems (Princeton: Van Nostrand, 1965).Google Scholar
3Berger, M. S. and Schechter, M.. Embedding theorems and quasilinear elliptic boundary value problems for unbounded domains. Trans. Amer. Math. Soc. 172 (1973), 261278.CrossRefGoogle Scholar
4Browder, F. E.. Nonlinear elliptic boundary value problems. Bull. Amer. Math. Soc. 69 (1963), 862874.CrossRefGoogle Scholar
5Browder, F. E.. Existence theorems for nonlinear partial differential equations. Proc. Symp. Pure Math. 16 (Providence: Amer. Math. Soc, 1970).Google Scholar
6Browder, F. E.. Existence theory for boundary value problems for quasilinear elliptic systems with strongly nonlinear lower order terms. Proc. Symp. Pure Math. 23 (Providence: Amer. Math. Soc., 1973).Google Scholar
7Donaldson, T.. Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces. J. Differential Equations 10 (1971), 507528.CrossRefGoogle Scholar
8Donaldson, T.. Inhomogeneous Orlicz-Sobolev spaces and nonlinear parabolic initial value problems. J. Differential Equations 16 (1974), 201256.CrossRefGoogle Scholar
9Donaldson, T. and Trudinger, N. S.. Orlicz-Sobolev spaces and imbedding theorems. J. Functional Analysis 8 (1971), 5275.CrossRefGoogle Scholar
10Edmunds, D. E. and Evans, W. D.. Elliptic and degenerate elliptic operators in unbounded domains. Ann. Scuola Norm. Sup. Pisa 27 (1973), 591640.Google Scholar
11Edmunds, D. E. and Evans, W. D.. Orlicz spaces on unbounded domains Proc. Roy. Soc. London Sect. A 342 (1975), 373400.Google Scholar
12Edmunds, D. E. and Webb, J. R. L.. Quasilinear elliptic problems in unbounded domains. Proc. Roy. Soc. London Sect. A 334 (1973), 397410.Google Scholar
13Gossez, J. P.. Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. Tram. Amer. Math. Soc. 190 (1974), 163205.CrossRefGoogle Scholar
14Hardy, G. H., Littlewood, J. E. and Polya, G.. Inequalities (Edinburgh: Univ. Press, 1959).Google Scholar
15Hess, P.. Problèmes auz limites non linéaires dans des domains non bornés. C.R. Acad. Sci. Paris Sér. A 281 (1975), 555557.Google Scholar
16Krasnosel'skii, M. A. and Rutckii, Ya. B.. Convex functions and Orlicz spaces (Groningen: Noordhoff, 1961).Google Scholar
17Leray, J. and Lions, J. L.. Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France 93 (1965), 97107.CrossRefGoogle Scholar
18Lions, J. L.. Quelques méthodes de résolution des problèmes aux limites non linéaires (Paris: Gauthier, 1969).Google Scholar