Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-05T02:43:43.914Z Has data issue: false hasContentIssue false

Affine length and affine dimension of a 1-set of ℝ2

Published online by Cambridge University Press:  14 November 2011

Françoise Dibos
Affiliation:
CEREMADE, Université Paris 9 Dauphine, Place de Lattre de Tassigny, 75775 Paris cedex 16, France email: [email protected]

Abstract

We propose here a way to extend to all the 1-set of ℝ2 the well-known affine length which was just defined for a C2 curve. Moreover, this leads us to define the affine dimension of a 1-set which can be used for discriminate rectifiable 1-sets from unrectifiable 1-sets of ℝ2.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ballester, C., Caselles, V. and Gonzales, M.. Affine invariant segmentation by variational method SIAM J. Appl. Math, (to appear).Google Scholar
2David, G.. Rectifiabilité quantifiee et le problème du voyageur de ćcommerce Séminaire EDP, 1990–91, Ecole Polytechnique, Palaiseau, France.Google Scholar
3David, G. and Semmes, S.. Singular integrals and rectifiable sets in ℝn, au dela des graphes lipschitziens. Astérisque 193 (1991), Société Mathématique de France.Google Scholar
4Davis, Roy O.. Measures of Hausdorff type. J. London Math. Soc. (2) 1 (1969), 30–4.CrossRefGoogle Scholar
5Davis, Roy O. and Samuels, P.. Density theorem for measures of Hausdorff type. Bull. London Math. Soc. 6 (1974), 31–6.CrossRefGoogle Scholar
6Dibos, F.. Uniform rectifiability of image segmentations obtained by a variational method. J. Math. Pures Appl. 73 (1994), 389412.Google Scholar
7Jones, Peter W.. Rectifiable set and the traveling salesman problem. Inventiones Math. 102 (1990), 115.CrossRefGoogle Scholar
8Koepfler, G., Morel, J.-M. and Solimini, S.. Segmentation by minimizing a functional and the ‘merging’ methods. Proceedings GRETSI, Juan les pins, France 1991, 1033–6.Google Scholar
9Falconer, K. J.. The Geometry of Fractal Sets (Cambridge: Cambridge University Press, 1985).CrossRefGoogle Scholar
10Federer, H.. Geometric Measure Theory (Berlin: Springer, 1969).Google Scholar
11Marstrand, J. M., Hausdorff two-dimensional measure in 3-space.Proc. London Math. Soc. (3) 11 (1961), 91108.CrossRefGoogle Scholar
12Mattila, P.. Geometry of Sets and Measures in Euclidean Spaces (Cambridge: Cambridge University Press, 1995).CrossRefGoogle Scholar
13Mattila, P.. Hausdorff m-regular and rectifiable sets in n-space. Trans. Amer. Math. Soc. 205 (1975), 263–74.Google Scholar
14Morel, J. M. and Solimini, S.. Variational Methods in Image Segmentation (Boston: Birkhauser, 1995).CrossRefGoogle Scholar
15Mumford, D. and Shah, J.. Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42 (1989), 577684.CrossRefGoogle Scholar