Published online by Cambridge University Press: 14 November 2011
General formulae are obtained for the reflection and transmission of harmonic acoustic waves by a curved interface between two media when the frequency is high. In addition to refracted rays there turn up tunnelling rays, if the surface is concave to the source, which are emitted from an evanescent region when the phenomenon of total internal reflection would be anticipated. Uniformly valid formulae dealing with the transition from refraction to tunnelling in both transmission and reflection are derived.
The theory is applied to the circular cylinder and to the top-hat circular jet. In the latter case it is suggested that radiation may tend to be more significant at inclinations of 50°-65° (downstream) and 25°-40° (upstream) to the axis of the cylinder. The augmentation due to tunnelling rays in propagation upstream is mentioned.