Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T16:35:21.387Z Has data issue: false hasContentIssue false

Abstract initial boundary value problems

Published online by Cambridge University Press:  14 November 2011

C. Palencia
Affiliation:
Departamento de Matematica Aplicada y Computatión, Universidad de Valladolid, Vallodolid, Spain email:[email protected]
I. Alonso Mallo
Affiliation:
Departamento de Matematica Aplicada y Computatión, Universidad de Valladolid, Vallodolid, Spain email:[email protected]

Extract

We consider abstract initial boundary value problems in a spirit similar to that of the classical theory of linear semigroups. We assume that the solution u at time t is given by u(t) = S(t) ξ + V(t)g, where ξ and g are respectively the initial and boundary data and S(t) and V(t) are linear operators. We take as a departing point the functional equations satisfied by the propagators S and V. We discuss conditions under which a pair (S, V) describes the solution of an abstract differential initial boundary value problem. Several examples are provided of parabolic and hyperbolic problems that can be accommodated within the abstract theory. We study the backward Euler's method for the time integration of the problems considered.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Alonso, I.Mallo. Problemas abstractos de valores iniciales y de contorno (Tesis Doctoral, Universidad de Valladolid, 1990).Google Scholar
2Mallo, I. Alonso and Palencia, C.. Métodos de un paso para problemas abstractos de valores iniciales y de contorno. In Actas del XII CEDYA, 191196 (Oviedo: Servicio Publicaciones Universidad de Oviedo, 1991).Google Scholar
3Amann, H.. Semigroups and nonlinear evolution equations. Linear Algebra Appl. 84 (1986), 332.CrossRefGoogle Scholar
4Amann, H.. Parabolic evolution equations and nonlinear boundary conditions. J. Differential Equations 72 (1988), 201269.Google Scholar
5Balakrishnan, A. V.. Applied Functional Analysis (Berlin: Springer, 1976).Google Scholar
6Clément, Ph., Heijmans, H. J. A. M. et al. One-Parameter Semigroups, CWI Monographs 5 (Amsterdam: North-Holland, 1987).Google Scholar
7Desch, W., Lasiecka, I. and Schappacher, W.. Feedback boundary control problems for linear semigroups. Israel J. Math. 51 (1985), 177207.CrossRefGoogle Scholar
8Diestel, J. and Uhl, J. J. Jr.Vectors Measures, Mathematical Surveys 15 (Providence, R.I.: American Mathematical Society, 1977).Google Scholar
9Dubois, R. M. and Lummer, G.. Formule de Duhamel abstraite. Arch. Math. Basel 43 (1984), 4956.Google Scholar
10Fairweather, G. and Saylor, R. D.. The reformulation and numerical solution of certain non-classical initial-boundary value problems. SIAM J. Sci. Statist. Comput. 12 (1991), 127144.Google Scholar
11Fattorini, H. O.. The Cauchy Problem (Reading, MA: Addison-Wesley, 1983).Google Scholar
12Greiner, G.. Perturbing the boundary conditions of a generator. Houston J. Math. 13 (1987), 213229.Google Scholar
13Greiner, G.. Semilinear boundary conditions for evolution equations of hyperbolic type. In Semigroup Theory and Applications, ed. Clément, Ph. et al. , Lecture Notes in Pure and Applied Mathematics 116 (New York: Marcel Dekker, 1988).Google Scholar
14Greiner, G. and Kuhn, K. G.. Linear and Semilinear Boundary Conditions: The Analytic Case. In Semigroup Theory and Evolution Equations, ed. Clément, Ph. et al. , Lecture Notes in Pure and Applied Mathematics 135 (New York: Marcel Dekker, 1991).Google Scholar
15Henry, D.. Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics 840 (Berlin: Springer, 1981).Google Scholar
16Kreiss, H. O.. Initial boundary value problems for hiperbolics equations. Comm. Pure Appl. Math. 13 (1970), 277298.CrossRefGoogle Scholar
17Lasiecka, I.. Unified theory for abstract parabolic boundary problems—a semigroup approach. Appl. Math. Optim. 6 (1980), 287333.CrossRefGoogle Scholar
18Lions, J. L. and Magènes, E.. Problémes aux Limites Non Homogènes et Applications, Vols. I, II (Paris: Dunod, 1968).Google Scholar
19Palencia, C. and Alonso, I. Mallo. On the convolution operators arising in the study of abstract IBVP (in prep.).Google Scholar
20Pazy, A.. Semigroups of Linear Operators and Applications to Partial Differential Equations (Berlin: Springer, 1983).Google Scholar
21Rauch, J.. L2 is a continuable initial condition for Kreiss' problem. Comm. Pure Appl. Math. 25 (1972), 265285.Google Scholar
22Taira, K.. Diffusion Processes and Partial Differential Equations (London: Academic Press, 1988).Google Scholar
23Weiss, G.. Admissible observations operators for linear semigroups. Israel J. Math. 65 (1989), 1743.Google Scholar