Vortex structures for an SO(5) model of high-TC superconductivity and antiferromagnetism
Published online by Cambridge University Press: 11 July 2007
Abstract
We study the structure of symmetric vortices in a Ginzburg–Landau model based on Zhang's SO(5) theory of high-temperature superconductivity and antiferromagnetism. We consider both a full Ginzburg–Landau theory (with Ginzburg–Landau scaling parameter κ < ∞) and a κ → ∞ limiting model. In all cases we find that the usual superconducting vortices (with normal phase in the central core region) become unstable (not energy minimizing) when the chemical potential crosses a threshold level, giving rise to a new vortex profile with antiferromagnetic ordering in the core region. We show that this phase transition in the cores is due to a bifurcation from a simple eigenvalue of the linearized equations. In the limiting large-κ model, we prove that the antiferromagnetic core solutions are always non-degenerate local energy minimizers and prove an exact multiplicity result for physically relevant solutions.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 130 , Issue 6 , December 2000 , pp. 1183 - 1215
- Copyright
- Copyright © Royal Society of Edinburgh 2000
- 3
- Cited by