Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T18:41:20.611Z Has data issue: false hasContentIssue false

Solution branches of a semilinear elliptic problem at corank-2 bifurcation points with Neumann boundary conditions*

Published online by Cambridge University Press:  14 November 2011

Mei Zhen
Affiliation:
Department of Mathematics, University of Marburg, 3550 Marburg/Lahn, Germany

Synopsis

Solution branches of a semilinear elliptic problem with Neumann boundary conditions are studied at its corank-2 bifurcation points. It is shown that generally there are exactly four different nontrivial solution branches passing through a corank-2 bifurcation point. The bifurcating solution branches are parametrised via a nonsingular enlarged problem. Branch switching at bifurcation points is incorporated with a continuation method.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Allgower, E. L., Böhmer, K. and Mei, Z.. A complete bifurcation scenario for the 2d-nonlinear Laplacian with Neumann boundary conditions on the unit square. In Bifurcation and Chaos: Analysis, Algorithms, Applications, eds Seydel, R., Schneider, F. W., Köpper, T., Troger, H.,ISNM 97, pp. 118 (Basel: Birkhäuser, 1991).Google Scholar
2Allgower, E. L. and Georg, K.. Numerical Continuation Methods: An Introduction (Berlin: Springer, 1990).CrossRefGoogle Scholar
3Budden, P. and Norbury, J.. Solution branches for nonlinear equilibrium problems—bifurcation and domain perturbations. IMA J. Appl. Math. 28 (1982), 109129.CrossRefGoogle Scholar
4Chow, S. N. and Hale, J. K.. Methods of Bifurcation Theory (Berlin: Springer, 1982).CrossRefGoogle Scholar
5Crawford, J. D., Golubitsky, M., Gomes, M., Knobloch, E. and Stewart, I.. Boundary conditions as symmetry constraints. In Singularity Theory and Its Application, eds Roberts, R. M., Stewart, I. N. pp. 6379, Lecture Notes in Mathematics 1463 (Berlin: Springer, 1991).CrossRefGoogle Scholar
6Decker, D. W. and Keller, H. B.. Multiple limit point bifurcation. J. Math. Anal. Appi. 75 (1980), 417430.CrossRefGoogle Scholar
7Golubitsky, M., Stewart, I. and Schaeffer, D. G.. Singularities and Groups in Bifurcation Theory, Vol. II (Berlin: Springer, 1988).CrossRefGoogle Scholar
8Healey, T. J. and Kielhöfer, H.. Symmetry and nodal properties in global bifurcation analysis of quasi-linear elliptic equations, Arch. Rational Mech. Anal. 113 (1991), 299311.CrossRefGoogle Scholar
9Isaacson, E. and Keller, H. B.. Analysis of Numerical Methods (New York: John Wiley & Sons, 1969).Google Scholar
10Lions, P. L.. On the existence of positive solutions of semilinear elliptic equations. SIAM Review 24 (1982) 441467.CrossRefGoogle Scholar
11McLeod, J. B., Sattinger, D. H.. Loss of stability and bifurcation at a double eigenvalue. J. Functional Anal. 14 (1973) 6284.CrossRefGoogle Scholar
12Mei, Z.. Bifurcations of a simplified buckling problem and the effect of discretizations. Manuscripta Math. 71 (1991) 225252.CrossRefGoogle Scholar
13Mei, Z.. Solution branches at corank-2 bifurcation points with symmetry. In Bifurcation and Chaos: Analysts, Algorithms, Applications, eds Seydel, R., Schneider, F. W., Kü;pper, T. and Troger, H. pp. 251255 (Basel: Birkhäuser, 1991).Google Scholar
14Meyer-Spasche, R.. Numerical treatment of Dirichlet problems with several solutions. In Numerische Behandlung von Differentialgleichung, eds Albrecht, J. and Collatz, L. ISNM 31, pp. 147163 (Basel: Birkhauser, 1976).CrossRefGoogle Scholar
15Weber, H.. A singular multi-grid iteration method for bifurcation problems. In Numerical Methods for Bifurcation Problems, eds Küpper, T., Mittelmann, H. D. and Weber, H. ISNM 70, pp. 547561 (Basel: Birkhauser, 1984).CrossRefGoogle Scholar