Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T18:33:14.849Z Has data issue: false hasContentIssue false

Self-adjoint subspace extensions satisfying λ-linear boundary conditions

Published online by Cambridge University Press:  14 November 2011

Harald Röh
Affiliation:
Department of Mathematics, Heriot-Watt University, Edinburgh

Synopsis

Let S be a symmetric subspace in a Hilbert space 2 with finite equal deficiency indices and let S* be its adjoint subspace in 2. We consider those self-adjoint subspace extensions of S into some larger Hilbert spaces 2 = ( × ℂm)2 which satisfy H⋂({0} × ℂm)2 = {{0,0}}. These extensions H are characterized in terms of inhomogeneous boundary conditions for S*; they are associated with eigenvalue problems for S* depending on λ-linear boundary conditions, which we also characterize.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Arens, R.. Operational calculus of linear relations. Pacific J. Math. 11 (1961), 923.CrossRefGoogle Scholar
2Bennewitz, C.. Symmetric relations on a Hilbert space. Conference on the theory of ordinary and partial differential equations, Dundee, Scotland, March 28–31, 1972. Lecture Notes in Mathematics 280, pp. 212218 (Berlin: Springer, 1973).Google Scholar
3Coddington, E. A.. Extension theory of formally normal and symmetric subspaces. Mem. Amer. Math. Soc. 134 (1973).Google Scholar
4Coddington, E. A.. Self-adjoint subspace extensions of nondensely defined symmetric operators. Adv. in Math. 14 (1974), 309332.CrossRefGoogle Scholar
5Coddington, E. A.. Self-adjoint problems for nondensely defined ordinary differential operators and their eigenfunction expansions. Adv. in Math. 15 (1975), l40).CrossRefGoogle Scholar
6Coddington, E. A. and Dijksma, A.. Self-adjoint subspaces and eigenfunction expansions for ordinary differential subspaces. J. Differential Equations 20 (1976), 473526.CrossRefGoogle Scholar
7Coddington, E. A. and Dijksma, A.. Adjoint subspaces in Banach spaces, with applications to ordinary differential subspaces. Ann. Mat. Pura Appl. 118 (1979), 1118.CrossRefGoogle Scholar
8Dijksma, A. and de Snoo, H. S. V.. Self-adjoint extensions of symmetric subspaces. Pacific J. Math. 54 (1974), 71100.CrossRefGoogle Scholar
9Dijksma, A. and de Snoo, H. S. V.. Eigenfunction expansions for nondensely defined differential operators. J. Differential Equations 17 (1975), 198219.CrossRefGoogle Scholar
10Fulton, C. T.. Two-point boundary value problems with eigenvalue parameter contained in the boundary condition. Proc. Roy. Soc. Edinburgh Sect. A 77 (1977), 293308.CrossRefGoogle Scholar
11Niessen, H. D.. Singuläre S-hermitesche Rand-Eigenwertprobleme. Manuscripta Math. 3 (1970) 3568.CrossRefGoogle Scholar
12Niessen, H. D. and Schneider, A.. Integraltransformationen zu singulären S-hermiteschen Rand–Eigenwertproblemen. Manuscripta Math. 5 (1971), 133145.CrossRefGoogle Scholar
13Schäfke, F. W. and Schneider, A.. S-hermitesche Rand-Eigenwertprobleme, Teil I. Math. Ann. 102 (1965), 926.CrossRefGoogle Scholar
14Schäfke, F. W. and Schneider, A.. S-hermitesche Rand-Eigenwertprobleme, Teil II. Math. Ann. 165 (1966), 236260.CrossRefGoogle Scholar
15Schäfke, F. W. and Schneider, A.. S-hermitesche Rand-Eigenwertprobleme, Teil III. Math. Ann. 177 (1968), 6794.CrossRefGoogle Scholar
16Walter, J.. Regular eigenvalue problems with eigenvalue parameter in the boundary condition. Math. Z. 133 (1973), 301312.CrossRefGoogle Scholar