Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T06:22:36.986Z Has data issue: false hasContentIssue false

Remarks on a non-well posed problem

Published online by Cambridge University Press:  14 November 2011

L. A. Medeiros
Affiliation:
Institute de Matemática-UFRJ, CP 68530-CEP 21944, Rio de Janeiro, RJ-Brasil

Synopsis

In this paper, it is proved that the problem (∂2u/∂t2) + ∆xu = v, u(x, 0) = u0(x), ut(x, 0) = u1(x), with homogeneous Dirichlet conditions on the boundary, is well posed provided v, u0, u1 belong to a suitable space of functions.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Dubinskii, Yu. The algebra of pseudodifferential operators with analytic symbols and its applications to mathematical physics. Russian Math. Surveys 37, 5 (1982), 109153.CrossRefGoogle Scholar
2Hadamard, J.. Le problème de Cauchy et les equations aux derivées partielles linéaires hiperboliques (Paris: Hermann, 1932).Google Scholar
3Lions, J. L. and Magenes, E.. Problèmes aux limites non homogènes et applications, Vol. 3 (Paris: Dunod, 1970).Google Scholar
4Lions, J. L.. Some remarks on the optimal control on singular distributed systems. INRIA, Domaine de Voluceau, 78150 Le Chesnay, France, 1984.Google Scholar
5Lions, J. L.. Quelques méthodes de résolution des problèmes aux limites non linéaires (Paris: Dunod, 1969).Google Scholar
6Rivera, P. H. and Vasconcellos, C. F.. Optimal control for a backward parabolic problem (to appear).Google Scholar