No CrossRef data available.
Article contents
Remarks on a formula of Ramanujan
Published online by Cambridge University Press: 06 February 2024
Abstract
Assuming an averaged form of Mertens’ conjecture and that the ordinates of the non-trivial zeros of the Riemann zeta function are linearly independent over the rationals, we analyse the finer structure of the terms in a well-known formula of Ramanujan.
MSC classification
Primary:
11M06: $zeta (s)$ and $L(s, chi)$
- Type
- Research Article
- Information
- Copyright
- Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh
References
Agarwal, A., Garg, M. and Maji, B.. Riesz-type criteria for the Riemann hypothesis. Proc. Am. Math. Soc. 150 (2022), 5151–5163.Google Scholar
Dixit, A.. Character analogues of Ramanujan-type integrals involving the Riemann $\Xi$
-function. Pac. J. Math. 255 (2012), 317–348.Google Scholar

Dixit, A.. Analogues of the general theta transformation formula. Proc. R. Soc. Edinburgh 143A (2013), 371–399.CrossRefGoogle Scholar
Hardy, G. H. and Littlewood, J. E.. Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes. Acta Math. 41 (1916), 119–196.Google Scholar
Juyal, A., Maji, B. and Sathyanarayana, S.. An exact formula for a Lambert series associated to a cusp form and the Möbius function. Ramanujan J. 57 (2022), 769–784.CrossRefGoogle Scholar
Kühn, P., Robles, N. and Roy, A.. On a class of functions that satisfies explicit formulae involving the Möbius function. Ramanujan J. 38 (2015), 383–422.CrossRefGoogle Scholar
Paris, R. B.. The numerical evaluation of the Riesz function. arXiv:2107.02800 [math.CA].Google Scholar
Roy, A., Zaharescu, A. and Zaki, M.. Some identities involving convolutions of Dirichlet characters and the Möbius function. Proc. Indian Acad. Sci. Math. Sci. 126 (2016), 21–33.Google Scholar
Staś, W.. Zur theorie der Möbiusschen $\mu$
-funktion (German). Acta Arith. 7 (1962), 409–416.Google Scholar

Staś, W.. Some remarks on a series of Ramanujan. Acta Arith. 10 (1965), 359–368.CrossRefGoogle Scholar
Titchmarsh, E. C.. The theory of the Riemann zeta-function, 2nd edn (The Clarendon Press, Oxford University Press, New York, 1986).Google Scholar