Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T23:38:30.040Z Has data issue: false hasContentIssue false

Poincaré inequalities for Sobolev spaces with matrix-valued weights and applications to degenerate partial differential equations

Published online by Cambridge University Press:  22 April 2018

Dario D. Monticelli
Affiliation:
Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 9, 20133 Milan, Italy ([email protected])
Kevin R. Payne
Affiliation:
Dipartimento di Matematica ‘F. Enriques’, Università degli Studi di Milano, via C. Saldini 50, 20133 Milan, Italy ([email protected])
Fabio Punzo
Affiliation:
Dipartimento di Matematica e Informatica, Università della Calabria, via Pietro Bucci, 87036 Arcavacata di Rende (CS), Italy

Abstract

For bounded domains Ω, we prove that the Lp-norm of a regular function with compact support is controlled by weighted Lp-norms of its gradient, where the weight belongs to a class of symmetric non-negative definite matrix-valued functions. The class of weights is defined by regularity assumptions and structural conditions on the degeneracy set, where the determinant vanishes. In particular, the weight A is assumed to have rank at least 1 when restricted to the normal bundle of the degeneracy set S. This generalization of the classical Poincaré inequality is then applied to develop a robust theory of first-order Lp-based Sobolev spaces with matrix-valued weight A. The Poincaré inequality and these Sobolev spaces are then applied to produce various results on existence, uniqueness and qualitative properties of weak solutions to boundary-value problems for degenerate elliptic, degenerate parabolic and degenerate hyperbolic partial differential equations (PDEs) of second order written in divergence form, where A is calibrated to the matrix of coefficients of the second-order spatial derivatives. The notion of weak solution is variational: the spatial states belong to the matrix-weighted Sobolev spaces with p = 2. For the degenerate elliptic PDEs, the Dirichlet problem is treated by the use of the Poincaré inequality and Lax–Milgram theorem, while the treatment of the Cauchy–Dirichlet problem for the degenerate evolution equations relies only on the Poincaré inequality and the parabolic and hyperbolic counterparts of the Lax–Milgram theorem.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Dipartimento di Matematica, Politecnico di Milano, Via Bondardi 9, 20133 Milan, Italy ([email protected]).