Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T18:07:55.108Z Has data issue: false hasContentIssue false

On the Vitali–Hahn–Saks theorem

Published online by Cambridge University Press:  14 November 2011

Aníbal Moltó
Affiliation:
Facultad de Matemáticas, Dr Moliner s/n, Burjasot, Valencia, Spain

Synopsis

In this paper, a class of Boolean rings containing the class discussed in papers by Seever (1968) and Faires (1976), is defined in such a way that an extension of the classical Vitali–Hahn–Saks theorem holds for exhausting additive set functions. Some new compact topological spaces K for which C(K) is a Grothendieck space are constructed and a Nikodym type theorem is deduced from it. The Boolean algebras of Seever and Faires and those we study here are defined by ‘interpolation properties’ between disjoint sequences in the algebra. We give an example at the end of the paper that illustrates the difficulties arising when we try to find a larger class of Boolean algebras, defined in terms of such properties, for which the Vitali–Hanh–Saks theorem holds.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ando, T.. Convergent sequences of finitely additive measures. Pacific J. Math. 11 (1961), 359404.CrossRefGoogle Scholar
2Diestel, J. and Uhl, J. J., Jr. Vector Measures (Providence, Rhode Island: American Mathematical Society, 1977).CrossRefGoogle Scholar
3Drewnowski, L.. Topological rings of sets, continuous set functions, Integration I. Bull. Acad. Polon. Set Sér. Sci. Math. Astronom. Phys. 20 (1972), 269276.Google Scholar
4Drewnowski, L.. Topological rings of sets, continuous set functions, integration II. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 277286.Google Scholar
5Dunford, N. and Schwartz, J.. Linear Operators, Pt I (New York: Wiley-Interscience, 1958).Google Scholar
6Engelking, R.. General Topology (Warsaw: PWN-Polish Scientific Publishers, 1977).Google Scholar
7Faires, B. T.. On Vitali–Hahn–Saks–Nikodym type theorems. Ann. Inst. Fourier (Grenoble) 26 (1976), 99114.CrossRefGoogle Scholar
8Gillman, L. and Jerison, J.. Rings of Continuous Functions (New York: Van Nostrand Reinhold, 1960).CrossRefGoogle Scholar
9Grothendieck, A.. Sur les applications linéaires faiblement compactes d'espaces du type C(K). Canad. J. Math. 5 (1953), 129173.CrossRefGoogle Scholar
10Isbell, J. and Semadeni, Z.. Projection constants and spaces of continuous functions. Trans. Amer. Math. Soc. 107 (1963), 3848.CrossRefGoogle Scholar
11Kelley, J. L.. General Topology (New York: Van Nostrand Reinhold, 1963).Google Scholar
12Köthe, G.. Topological Vector Spaces I (Berlin: Springer, 1969).Google Scholar
13Labuda, I.. Sur quelques généralisations des théorèmes de Nikodym et de Vitali–Hahn–Saks. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 447456.Google Scholar
14Orlicz, W.. On L*ϕ based on the notion of a finitely additive integral. Comment. Math. Prace Mat. 12(1968), 99113.Google Scholar
15Rosenthal, H. P.. On relatively disjoint families of measures, with some applications to Banach space theory. Studia Math. 37 (1970), 1336.CrossRefGoogle Scholar
16Schachermayer, W.. On Some Classical Measure-Theoretic Theorems for Non-σ-complete Boolean Algebras (Linz Univ. Technical Report, 1978).Google Scholar
17Seever, G. L.. Measures on F-spaces. Trans. Amer. Math. Soc. 133 (1968), 267280.Google Scholar
18Sikorski, R.. Boolean Algebras (Berlin: Springer, 1969).CrossRefGoogle Scholar