Published online by Cambridge University Press: 14 November 2011
A recently developed asymptotic theory of higher-order differential equations is applied to problems of right-definite type to determine the numbers M+, M− of linearly independent solutions with a convergent Dirichlet integral, M+ and M− referring to the usual upper and lower λ.-half-planes. Particular attention is given to the phenomenon noted by Karlsson in which one of M+ and M− is maximal but not the other. Conditions are given under which M+ (say) is maximal and M− is the same, one less, and two less.