Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T19:09:13.807Z Has data issue: false hasContentIssue false

On the growth of solutions to second order differential equations in Banach spaces

Published online by Cambridge University Press:  14 November 2011

H. O. Fattorini
Affiliation:
Departments of Mathematics and System Science, University of California, Los Angeles, California 90024, U.S.A

Synopsis

We obtain estimates for the exponential growth of the solutions to u″(t) = (A + ζ2I)u(t) in terms of the exponential growth of the solutions to u″(t) = Au(t), where ζ is an arbitrary complex number. Estimates in exponentially weighted L2 norms are also considered in Hilbert space.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bragg, L. R. and Dettman, W.. An operator calculus for related partial differential equations. J. Math. Anal. Appl. 22 (1968), 261271.CrossRefGoogle Scholar
2Dunford, N. and Schwartz, J. T.. Linear Operators, Part II (New York: Interscience-Wiley, 1963).Google Scholar
3Fattorini, H. O.. Ordinary differential equations in linear topological spaces I. J. Differential Equations 5 (1969), 72105.CrossRefGoogle Scholar
4Fattorini, H. O.. Ordinary differential equations in linear topological spaces II. J. Differential Equations 6 (1969), 5070.CrossRefGoogle Scholar
5Fattorini, H. O.. Uniformly bounded cosine functions in Hilbert space. Indiana Univ. Math. J. 20 (1970), 411425.CrossRefGoogle Scholar
6Fattorini, H. O.. On the Schrodinger singular perturbation problem, to appear in SIAM J. Math. Anal.Google Scholar
7Gradstein, J. S. and Ryzik, J. M.. Tables of Integrals, Sums, Series and Products (Russian) (Moscow: Goztekhizdat, 1963).Google Scholar
8Hoffman, K.. Banach Spaces of Analytic Functions (Englewood Cliffs: Prentice-Hall, 1965).Google Scholar
9Markushevic, A. I.. Theory of functions of a complex variable (English translation) (New York: Chelsea, 1967).Google Scholar
10Natanson, I. P.. Theory of functions of a real variable (Moscow: Goztekhizdat, 1957).Google Scholar
11Sova, M.. Cosine operator functions. Rozprawy Mat. 49 (1966), 147.Google Scholar
12Sova, M.. Perturbations numeriques des evolutions paraboliques et hyperboliques. Casopis Pest. Mat. 96 (1971), 406425.CrossRefGoogle Scholar
13Watson, G. N.. A Treatise on the Theory of Bessel Functions (Cambridge University Press, 1948).Google Scholar