Published online by Cambridge University Press: 14 November 2011
The asymptotic decay of L2-solutions of Schrödinger equations (-Δ+V)ψ=0 in ΔR= {x εRn∣∣x∣=r>R} is investigated, where V(x) = V1(r) + V2(x) with V1→ ∞ for r↑∞ and with some ε > 0 for large r. Under additional assumptions on the decay of V1, pointwise upper bounds to |ψ |and lower bounds to the spherical average of ψ are given showing the same asymptotics for r→ ∞. For the case V→ const. > 0 for r→ ℝ (investigated in [8] a simplified treatment is given.