Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T15:59:23.015Z Has data issue: false hasContentIssue false

On mixed boundary value problems for the Helmholtz equation*

Published online by Cambridge University Press:  14 February 2012

R. Kress
Affiliation:
Lehrstühle für Numerische und Angewandte Mathematak, Universitat Göttingen
G. F. Roach
Affiliation:
Department of Mathematics, University of Strathclyde

Synopsis

Existence and uniqueness theorems are obtained for a class of mixed boundary value problems associated with the three-dimensional Helmholtz equation. In this context the boundary of the region of interest is assumed to consist of the union of a finite number of disjoint, closed, bounded Lyapunov surfaces on some of which are imposed Dirichlet conditions whilst Neumann conditions are imposed on the remainder. An integral equation method is adopted throughout. The required boundary integral equations are generated by a modified layer theoretic approach which extends the work of Brakhage and Werner [1] and Leis [2, 3].

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Brakhage, H. and Werner, P.Über das Dirichletsche Auβenraumproblem für die Helmholtzsche Schwingungsgleichung. Arch. Math.(Basel) 16 (1965), 325329.CrossRefGoogle Scholar
2Leis, R.Zur Dirichletschen Randwertaufgabe des Außenraums der Schwingungsgleichung. Math. Z. 90 (1965), 205211.CrossRefGoogle Scholar
3Leis, R. Vorlesungen über Partielle Differentialgleichungen zweiter Ordnung. Hochschultaschenbucher 165/165a (Mannheim: Bibliographisches Institut, 1967).Google Scholar
4Rellich, F.Über das asymptotische Verhalten der Lösungen von Δu+Δu = 0 in unendlichen Gebieten. Jber. Deutsch. Math.-Verein. 53 (1943), 5765.Google Scholar
5Günter, N. M.Die Potentialtheorie und ihre Anwendungen auf Grundaufgaben der Mathematischen Physik (Leipzig: Teubner, 1957).Google Scholar