Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T12:45:15.188Z Has data issue: false hasContentIssue false

On boundary feedback stabilisability of a viscoelastic beam

Published online by Cambridge University Press:  14 November 2011

Guenter Leugering
Affiliation:
Fachbereich Mathematik, Technische Hochschule Darmstadt, Schlossgartenstrasse 7, D-6100 Darmstadt, West Germany

Synopsis

It is shown that a cantilevered beam with weak viscoelastic damping of Boltzmann-type can be uniformly stabilised by velocity feedback applied as a shearing force at the free end of the beam. Estimates for the viscoelastic energy are derived using the energy multiplier method. The energy decay is related to the decay of the relaxation modulus associated with the viscoelastic material.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Chen, G., Delfour, M., Krall, A. and Payre, G.. Modeling stabilization and control of serially connected beams. SIAM J. Control Optim. 25 (1987), 526546.CrossRefGoogle Scholar
2Christensen, R. M.. The Theory of Linear Viscoelasticity: An Introduction (New York: Academic Press, 1971).Google Scholar
3Dafermos, C. M.. An abstract volterra equation with applications to linear viscoelasticity. J. Differential Equations 7 (1970), 554569.CrossRefGoogle Scholar
4Dafermos, C. M.. Asymptotic stability in viscoelasticity. Arch. Rational Mech. Anal. 37 (1970), 297308.CrossRefGoogle Scholar
5Dafermos, C. M.. Contraction semigroups and trend to equilibrium in continuum mechanics. In Applications of Methods of Functional Analysis to Problems in Mechanics, eds Nayroles, B. and Germain, P., pp. 295306. Joint Symposium IUTAM/IMU (Berlin: Springer, 1976).CrossRefGoogle Scholar
6Datko, R.. Uniform asymptotic stability of evolutionary processes in a banach space. SIAM J. Math. Anal. 3 (1973), 428445.CrossRefGoogle Scholar
7Datko, R.. Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM J. Control Optim. 26 (1988), 697713.CrossRefGoogle Scholar
8Datko, R., Lagnese, J. and Polis, M. P.. An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control Optim. 24 (1986), 152156.CrossRefGoogle Scholar
9Day, W. A., The Thermodynamics of Simple Materials with Fading Memory, Springer Tracts in Natural Philosophy 22 (Berlin: Springer, 1972).CrossRefGoogle Scholar
10Day, W. A.. The decay of the energy in a viscoelastic body. Mathematika 27 (1980), 268286.CrossRefGoogle Scholar
11Desch, W., Hannsgen, K. B., Renardy, Y. and Wheeler, R. L.. Boundary stabilization of an euler-bernouilli beam with viscoelastic damping. Proceedings of the 26th IEEE CDC conference, Los Angeles, 1987.CrossRefGoogle Scholar
12Desch, W. and Miller, R. K.. Exponential stabilization of Volterra integrodifferential equations in Hilbert spaces. J. Differential Equations 70 (1987), 366389.CrossRefGoogle Scholar
13Duvaut, G. and Lions, J. L., Les Inequations en Mecanique et en Physique. Paris: Dunod, 1969).Google Scholar
14Hannsgen, K. B. and Wheeler, R. L.. Time delays and boundary feedback stabilization in one-dimensional viscoelasticity. In Distributed Parameter Systems, eds Kappel, F. and Kunisch, K., pp. 136152. 3rd International Conference Vorau 1986 (Berlin: Springer, 1987).CrossRefGoogle Scholar
15Lagnese, J. E.. Boundary Stabilization of Thin Plates (SIAM, 1989).CrossRefGoogle Scholar
16Lagnese, J. E. and Lions, J. L.. Modeling, analysis and control of thin plates. (Paris: Masson, 1987).Google Scholar
17MacCamy, R. C. and Wong, J. S. W.. Exponential stability for a nonlinear functional differential equation. J. Math. Anal. Appl. 39 (1972), 699705.CrossRefGoogle Scholar
18MacCamy, R. C.. Memory effects in one-dimensional problems of continuum mechanics. In Contemporary Developments in Continuum Mechanics and Partial Differential Equations. eds Medeiros, L. A. and Penha, G. M. de la (North Holland, 1978).Google Scholar
19Nerain, A. and Joseph, D. D.. Linearized dynamics for step jumps of velocity and displacement of shearing flows of a simple fluid. Rheologica Acta 21 (1982) 228250.CrossRefGoogle Scholar
20Prüss, J.. Positivity and regularity of hyperbolic Volterra equations in Banach spaces. Math. Ann. 279 (1987), 317344.CrossRefGoogle Scholar
21Showalter, R.. Hilbert Space Methods for Partial Differential Equations (London: Pitman, 1977).Google Scholar