Article contents
Liouville theorem for fractional Hénon–Lane–Emden systems on a half space
Published online by Cambridge University Press: 17 September 2019
Abstract
This paper is concerned with the fractional system
\begin{cases} (-\Delta)^{\frac{\alpha}{2}} u(x) = \vert x \vert ^a v^p(x), &x\in\mathbb{R}^n_+,\\ (-\Delta)^{\frac{\beta}{2}} v(x) = \vert x \vert ^b u^q(x), &x\in\mathbb{R}^n_+,\\ u(x)=v(x)=0, &x\in\mathbb{R}^n{\setminus}\mathbb{R}^n_+, \end{cases}
$p \leqslant \frac {n+\alpha +2a}{n-\beta }$,
$q \leqslant \frac {n+\beta +2b}{n-\alpha }$,
$p+q<\frac {n+\alpha +2a}{n-\beta }+\frac {n+\beta +2b}{n-\alpha }$ and (u, v) is a nonnegative strong solution of the system, then u ≡ v ≡ 0.
Keywords
MSC classification
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 150 , Issue 6 , December 2020 , pp. 3060 - 3073
- Copyright
- Copyright © 2019 The Royal Society of Edinburgh
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20201203150711517-0290:S0308210519000581:S0308210519000581_inline11.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20201203150711517-0290:S0308210519000581:S0308210519000581_inline12.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20201203150711517-0290:S0308210519000581:S0308210519000581_inline13.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20201203150711517-0290:S0308210519000581:S0308210519000581_inline14.png?pub-status=live)
- 4
- Cited by