Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T17:48:45.681Z Has data issue: false hasContentIssue false

Hyperjacobians, determinantal ideals and weak solutions to variational problems

Published online by Cambridge University Press:  14 November 2011

Peter J. Olver
Affiliation:
School of Mathematics, University of Minnesota, Minneapolis, MN 55455, U.S.A

Synopsis

The problem of classifying homogeneous null Lagrangians satisfying an nth order divergence identity is completely solved. All such differential polynomials are affine combinations of higher order Jacobian determinants, called hyperjacobians, which can be expressed as higher dimensional determinants of higher order Jacobian matrices. Special cases, called transvectants, are of importance in classical invariant theory. Transform techniques reduce this question to the characterization of the symbolic powers of certain determinantal ideals. Applications to the proof of existence of minimizers of certain quasi-convex variational problems with weakened growth conditions are discussed.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Adams, R. A.. Sobolev Spaces (New York: Academic Press, 1975).Google Scholar
2Aldersley, S. J.. Higher Euler operators and some of their applications. J. Math. Phys. 20 (1979), 522531.CrossRefGoogle Scholar
3Anderson, I. M. and Duchamp, T.. On the existence of global variational principles. Amer. J. Math. 102 (1980), 781868.CrossRefGoogle Scholar
4Ball, J. M.. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977), 337403.CrossRefGoogle Scholar
5Ball, J. M., Currie, J. C. and Olver, P. J.. Null Lagrangians, weak continuity and variational problems of arbitrary order. J. Funct. Anal. 41 (1981), 135174.CrossRefGoogle Scholar
6DeConcini, C., Eisenbud, D. and Procesi, C.. Young diagrams and determinantal varieties. Invent. Math. 56 (1980), 129165.Google Scholar
7Escherich, G. V.. Die Determinanten hoheren Ranges und ihre Verwendung zur Bildung von Invarianten. Denkschr. Kais. Akad. Wiss. Wien 43 (1882), 112.Google Scholar
8Gel´fand, I. M. and Dikii, L. A.. Asymptotic behavior of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-DeVries equation. Russian Math. Surveys 30 (1975), 77113.CrossRefGoogle Scholar
9Gegenbauer, L.. Über Determinanten hoheren Ranges. Denkschr. Kais. Akad. Wiss. Wien 43 (1882), 1732.Google Scholar
10Gordan, P.. Vorlesung Über Invariantentheorie, Vol. 2 (ed. Kerschensteiner, G.) (Leipzig: Teubner, 1887).Google Scholar
11Grace, J. H. and Young, A.. The Algebra of Invariants (Cambridge University Press, 1903).Google Scholar
12Gurevich, G. B.. Foundations of the Theory of Algebraic Invariants (Groningen: Noordhoff, 1964).Google Scholar
13Hochster, M.. Criteria for equality of ordinary and symbolic powers of primes. Math. Z. 133 (1973), 5365.Google Scholar
14Hodge, W. V. D. and Pedoe, D.. Methods of Algebraic Geometry, Vol. II (Cambridge University Press, 1954).Google Scholar
15Lascoux, A.. Syzygies des varietés determinantales. Adv. in Math. 30 (1978), 202237.CrossRefGoogle Scholar
16Mount, K. R.. A remark on determinantal loci. J. London Math. Soc. 42 (1967), 595598.CrossRefGoogle Scholar
17Northcott, D. G.. Some remarks on the theory of ideals defined by matrices. Quart. J. Math. Oxford 14 (1963), 193204.Google Scholar
18Oldenburger, R.. Higher dimensional determinants. Amer. Math. Monthly 47 (1940), 2533.CrossRefGoogle Scholar
19Olver, P. J.. Euler operators and conservation laws of the BBM equation. Math. Proc. Cambridge Philos. Soc. 85 (1979), 143160.CrossRefGoogle Scholar
20Olver, P. J.. Differential hyperforms I. Univ. of Minnesota, Mathematics Report 82–101.Google Scholar
21Shakiban, C.. The Euler operator in the formal calculus of variations (Ph.D. Thesis, Brown University, Providence, R.I., 1979).Google Scholar
22Shakiban, C.. A resolution of the Euler operator II. Math. Proc. Cambridge Philos. Soc. 89 (1981), 501510.Google Scholar
23Towber, J.. Two new functors from modules to algebras. J. Algebra 47 (1977), 80104.Google Scholar
24Trung, N. V.. On the symbolic powers of determinantal ideals. J. Algebra 58 (1979), 361369.Google Scholar