Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T05:55:17.062Z Has data issue: false hasContentIssue false

Gradient estimates and heat kernel estimates

Published online by Cambridge University Press:  14 November 2011

Zhongmin Qian
Affiliation:
Applied Mathematics Institute, Shanghai Institute of Railway Technology, 1 Zhennan Road, Shanghai 200333, People's Republic of China

Extract

In the first part of this paper, Yau's estimates for positive L-harmonic functions and Li and Yau's gradient estimates for the positive solutions of a general parabolic heat equation on a complete Riemannian manifold are obtained by the use of Bakry and Emery's theory. In the second part we establish a heat kernel bound for a second-order differential operator which has a bounded and measurable drift, using Girsanov's formula.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bakry, D.. Un critere de non-explosion pour certaines diffusions ser une variété riemannienne complete. C. R. Acad. Sci. Paris 303 (1986), 2326.Google Scholar
2Bakry, D. and Emery, M.. Diffusions hypercontractive. Séminaire de Probabilités XIX, Lecture Notes in Mathematics 1123, 177206 (Berlin: Springer, 1985).Google Scholar
3Chavel, I.. Eigenvalues in Riemannian Geometry (New York: Academic Press, 1984).Google Scholar
4vies, E. B. Da. Heat Kernels and Spectral Theory (Edinburgh: Cambridge University Press, 1989).Google Scholar
5Dellacherie, C. and Meyer, P. A.. Probabilités et Potential, Vol. IV (Paris: Hermann, 1987).Google Scholar
6Elworthy, K. D.. Geometric aspects of diffusions on manifolds. In Ecole d'eté de probabilités de Saint Flour XV-XVII, 1985–1987, Lecture Notes in Mathematics 1362, 276425 (Berlin: Springer, 1987).Google Scholar
7Elworthy, K. D.. Stochastic flows on Riemannian manifolds. In Diffusion Processes and Related Problems in Analysis, Vol. II, 3772 (Boston: Birkhauser, 1992).Google Scholar
8Gaffney, M. P.. The conservation property of the heat equation on Riemannian manifolds. Comm. Pure Appl. Math. 12 (1959), 111.CrossRefGoogle Scholar
9Ikeda, N. and Watanabe, S.. Stochastic Differential Equations and Diffusion Processes (Amsterdam: North-Holland, 1981).Google Scholar
10Li, P. and Yau, S. T.. On the parabolic kernel of the Schrödinger operator. Ada Math. 156 (1986), 153201.Google Scholar
11Lyons, T. J. and Zheng, W. A.. On conditional diffusion processes. Proc. Roy. Soc. Edinburgh Sect. A 115(1900), 243–55.CrossRefGoogle Scholar
12Setti, A. G.. Gaussian estimates for the heat kernel of the weighted Laplacian and fractal measures. Canad. J. Math. 44 (1992), 1061–87.CrossRefGoogle Scholar
13Schoen, R. and Yau, S. T.. Differential Geometry (Beijing: Academic Press, 1988, in Chinese).Google Scholar
14Yau, S. T.. Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 28 (1975), 201–28.CrossRefGoogle Scholar