Published online by Cambridge University Press: 05 February 2008
Let $\varOmega$ be a domain in $\mathbb{R}^N$ (possibly unbounded), $N\geq2$, $1<p<\infty$, and let $V\in L_{\mathrm{loc}}^\infty(\varOmega)$. Consider the energy functional $\mathcal{Q}_V$ on $C_{\mathrm{c}}^\infty(\varOmega)$ and its Gâteaux derivative $\mathcal{Q}_V^\prime$, respectively, given by
$$ \mathcal{Q}_V(u)\eqdef\frac{1}{p}\int_\varOmega(|\nabla u|^p+V|u|^p)\,\mathrm{d} x,\qquad\mathcal{Q}_V^\prime(u)= \mathrm{div}(|\nabla u|^{p-2}\nabla u)+V|u|^{p-2}u, $$
for $u\in C_{\mathrm{c}}^\infty(\varOmega)$. Assume that $\mathcal{Q}_V>0$ on $C_{\mathrm{c}}^{\infty}(\varOmega)\setminus\{0\}$ and that $\mathcal{Q}_V$ does not have a ground state (in the sense of a null sequence for $\mathcal{Q}_V$ that converges in $L_{\mathrm{loc}}^p(\varOmega)$ to a positive function $\varphi\in C_{\mathrm{loc}}^1(\varOmega)$, a ground state). Finally, let $f\in\mathcal{D}^\prime(\varOmega)$ be such that the functional $u\mapsto \mathcal{Q}_V(u)-\langle u,f\rangle:C_{\mathrm{c}}^\infty(\varOmega)\to\mathbb{R}$ is bounded from below. Then the equation
$$ \mathcal{Q}_V^\prime(u)=f $$
has a solution $u_0\in W^{1,p}_{\mathrm{loc}}(\varOmega)$ in the sense of distributions. This solution also minimizes the functional $u\mapsto\mathcal{Q}_V^{**}(u)-\langle u,f\rangle:C_{\mathrm{c}}^\infty(\varOmega)\to \mathbb{R}$, where $\mathcal{Q}_V^{**}$ denotes the bipolar ($\varGamma$-regularization) of $\mathcal{Q}_V$ and $\mathcal{Q}_V^{**}$ is the largest convex, weakly lower semicontinuous functional on $C_{\mathrm{c}}^\infty(\varOmega)$ that satisfies $\mathcal{Q}_V^{**}\leq\mathcal{Q}_V$. (The original energy functional $\mathcal{Q}_V$ is not necessarily convex.)