No CrossRef data available.
Article contents
Functions with finite intersections with analytic functions
Published online by Cambridge University Press: 14 November 2011
Synopsis
We prove that for every dense Gδ set H, there exists a continuous function f, such that f intersects every analytic function in finitely many points and f is infinitely differentiable exactly at the points of H. This answers a problem of S. Agronsky, A. M. Bruckner, M. Laczkovich and D. Preiss. They proved a result which implies that every continuous function with finite intersections with analytic functions is infinitely differentiable at the points of a dense Gδ set.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 112 , Issue 3-4 , 1989 , pp. 271 - 275
- Copyright
- Copyright © Royal Society of Edinburgh 1989
References
1Agronsky, S., Bruckner, A. M., Laczkovich, M. and Preiss, D.. Convexity conditions and intersections with smooth functions. Trans. Amer. Math. Soc. 289 (1985), 659–677.CrossRefGoogle Scholar
3Sierpinski, W.. Sur une propriété des ensembles F o linéaires. Fund. Math. 14 (1929), 216–220.CrossRefGoogle Scholar
4Zahorski, Z.. Sur l'ensemble des points singuliers d'une fonction d'une variable réelle admittant les dérivés de tous les ordres. Fund. Math. 34 (1947), 183–245.CrossRefGoogle Scholar