Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T22:53:01.605Z Has data issue: false hasContentIssue false

Existence of conjugate points for second and fourth order differential equations

Published online by Cambridge University Press:  14 November 2011

E. Müller-Pfeiffer
Affiliation:
Erfurt, GDR

Synopsis

The paper presents sufficient conditions on the coefficients of second and fourth order differential equations to ensure that there exists at least one pair of conjugate points on an interval (a, b), −∞≦ a <b ≦ ∞. Oscillation criteria related to the equation (p(x)y″)″ + q(x)y = 0, 0 < x < ∞, are proved with no sign restrictions on q(x).

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ahlbrandt, Calvin D.. Disconjugacy criteria of self-adjoint differential systems, J. Differential Equations 6 (1969), 271295.CrossRefGoogle Scholar
2Ahlbrandt, C. D., Hinton, D. B. and Lewis, R. T.. The effect of variable change on oscillation and disconjugacy criteria with applications to spectral theory and asymptotic theory. J. Math. Anal. Appl., to appear.Google Scholar
3Barrett, J. H.. Fourth order boundary value problems and comparison theorems. Canad. J. Math. 13 (1961), 625638.CrossRefGoogle Scholar
4Bradley, John S., Conditions for the existence of conjugate points for a fourth order linear differential equation. SIAM J. Appl. Math. 17 (1969), 984991.CrossRefGoogle Scholar
5Headley, V. and Swanson, C. A.. Oscillation criteria for elliptic equations. Pacific J. Math. 27 (1968), 501506.CrossRefGoogle Scholar
6Hunt, R. W. and Namboordiri, M. S. T.. Solution behaviour for general self-adjoint differential equations. Proc. London Math. Soc. 21 (1970), 637650.CrossRefGoogle Scholar
7Kreith, K.. A dynamical system for conjugate points. Pacific J. Math. 58 (1975), 123132.CrossRefGoogle Scholar
8Leighton, W.. On self-adjoint differential equations of second order. J. London Math. Soc. 27 (1952), 3747.CrossRefGoogle Scholar
9Leighton, W. and Nehari, Z.. On the oscillation of solutions of self-adjoint linear differential equations of the fourth order. Trans. Amer. Math. Soc. 89 (1958), 325377.CrossRefGoogle Scholar
10Lewis, Roger T.. The oscillation of fourth order linear differential operators. Canad. J. Math. 27 (1975), 138145.CrossRefGoogle Scholar
11Lewis, Roger. T.. The existence of conjugate points for self-adjoint differential equations of even order Proc. Amer. Math. Soc. 56 (1976), 162166.CrossRefGoogle Scholar
12Müller-Pfeifler, E.. Verallgemeinerungen eines Satzes von Leighton über die Oszillation selbstadjungierter Differentialgleichungen. Ann. Polon. Math., in press.Google Scholar
13Noussair, E. S. and Swanson, C. A.. Oscillation criteria for differential systems. J. Math. Anal. Appl. 36 (1971), 575580.CrossRefGoogle Scholar
14Reid, W. T.. Oscillation criteria for self-adjoint differential systems. Trans. Amer. Math. Soc. 101 (1961), 91106.CrossRefGoogle Scholar
15Reid, W. T.. Ricatti matrix differential equations and non-oscillation criteria for associated linear differential systems. Pacific J. Math. 13 (1963), 665685.CrossRefGoogle Scholar
16Sobolev, S. L.. Einige Anwendungen der Funktionalanalysis auf Gleichungen der mathematischen Physik (Berlin: Akademie-Verlag, 1964).Google Scholar
17Swanson, C. A.. Comparison and Oscillation Theory of Linear Differential Equations (New York and London: Academic Press, 1968)Google Scholar
18Tipler, F. J.. General relativity and conjugate ordinary differential equations, J. Differential Equations 30 (1978), 165174.CrossRefGoogle Scholar