Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T20:43:03.923Z Has data issue: false hasContentIssue false

Eigenfunction expansions for a class of J-selfadjoint ordinary differential operators with boundary conditions containing the eigenvalue parameter

Published online by Cambridge University Press:  14 November 2011

Aalt Dijksma
Affiliation:
Mathematisch Instituut, Rijksuniversiteit, Groningen, The Netherlands

Synopsis

In provided with a J-innerproduct we characterize the J-selfadjoint operators generated by a symmetric ordinary differential expression on an open real interval ι. For a subclass of these operators we prove eigenfunction expansion results using Hilbertspace-techniques.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bognár, J.. Indefinite inner product spaces (Berlin: Springer, 1974).CrossRefGoogle Scholar
2Coddington, E. A.. Extension theory of formally normal and symmetric subspaces. Amer. Math. Soc. Memoirs 134 (1973).Google Scholar
3Coddington, E. A. and Dijksma, A.. Adjoint subspaces in Banach spaces with applications to ordinary differential subspaces. Ann. Mat. Pura Appl. 118 (1978), 1118.CrossRefGoogle Scholar
4Cohen, D. S.. An integral transform associated with boundary conditions containing an eigenvalue parameter. SIAM J. Appl. Math. 14 (5) (1966), 11641175.CrossRefGoogle Scholar
5Dijksma, A. and de Snoo, H. S. V.. Eigenfunction expansions for nondensely defined differential operators. J. Differential Equations 17 (1975), 198219.CrossRefGoogle Scholar
6Friedman, B.. Principles and Techniques of Applied Mathematics (New York: Wiley, 1956).Google Scholar
7Fulton, C. T.. Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A 77 (1977), 293308.CrossRefGoogle Scholar
8Goodwin, B. E.. On the realization of the eigenvalues of integral equations whose kernels are entire or meromorphic in the eigenvalue parameter. SIAM J. Appl. Math. 14 (1) (1966), 6585.Google Scholar
9Iohvidov, I. S. and Kreĭn, M. G.. Spectral theory of operators in spaces with an indefinite metric I. Amer. Math. Soc. Transi 13 (2) (1960), 105175.Google Scholar
10Kreĭn, M. G. and Langer, H.. On the spectral function of a selfadjoint operator in a space with indefinite metric. Doki. Akad. Nauk SSSR 152 (1963), 3942; Soviet Math. 4/13 (1963), 1236–1239.Google Scholar
11Niessen, H. D.. Singuläre S-hermitesche Rand-Eigenwertprobleme. Manuscripta Math. 3 (1970), 3568.CrossRefGoogle Scholar
12Russakovskii, E. M.. Operator treatment of boundary problems with spectral parameters entering via polynomials in the boundary conditions. Functional Anal. Appl. 9 (1975), 358359.CrossRefGoogle Scholar
13Russakovskii, E. M.. Operator treatment of a boundary-value problem with the spectral parameter appearing rationally in the boundary conditions. Theory of functions, functional analysis and its applications 30, pp. 120128 (Kharkov, 1978) (In Russian).Google Scholar
14Schäfke, F. W. und Schneider, A.. S-hermitesche Rand-Eigenwertprobleme I, II, III. Math. Ann. 162 (1966), 926; 165 (1966), 236–260; 177 (1968), 67–94.CrossRefGoogle Scholar
15Schneider, A.. A note on eigenvalue problems with eigenvalue parameter in the boundary conditions. Math. Z. 136 (1974), 163167.Google Scholar
16Walter, J.. Regular eigenvalue problems with eigenvalue parameter in the boundary conditions. Math. Z. 133 (1973), 301312.Google Scholar