Published online by Cambridge University Press: 12 July 2007
In this paper we investigate three-dimensional complete minimal hypersurfaces with constant Gauss-Kronecker curvature in a space form M4(c) (c ≤ 0). We prove that if the scalar curvature of a such hypersurface is bounded from below, then its Gauss-Kronecker curvature vanishes identically. Examples of complete minimal hypersurfaces which are not totally geodesic in the Euclidean space E4 and the hyperbolic space H4(c) with vanishing Gauss-Kronecker curvature are also presented. It is also proved that totally umbilical hypersurfaces are the only complete hypersurfaces with non-zero constant mean curvature and with zero quasi-Gauss-Kronecker curvature in a space form M4(c) (c ≤ 0) if the scalar curvature is bounded from below. In particular, we classify complete hypersurfaces with constant mean curvature and with constant quasi-Gauss-Kronecker curvature in a space form M4(c) (c ≤ 0) if the scalar curvature r satisfies r≥ ⅔c.