No CrossRef data available.
Published online by Cambridge University Press: 25 September 2013
Associated Legendre functions are studied for the case where the degree is in conical form −½ + iτ (τ real), and the order iμ and argument ix are purely imaginary (μ and x real). Conical functions in this form have applications to Fourier expansions of the eigenfunctions on a closed geodesic. Real-valued numerically satisfactory solutions are introduced which are continuous for all real x. Uniform asymptotic approximations and expansions are then derived for the cases where one or both of μ and τ are large; these results (which involve elementary, Airy, Bessel and parabolic cylinder functions) are uniformly valid for unbounded x.