Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T11:53:54.954Z Has data issue: false hasContentIssue false

Comparison principles for strongly coupled reaction-diffusion equations

Published online by Cambridge University Press:  14 November 2011

B. D. Sleeman
Affiliation:
Department of Mathematical Sciences, University of Dundee, Dundee DD1 4HN, Scotland
E. Tuma
Affiliation:
Fachbereich 6, Mathematik, Universität GH Essen, Universitätsstr. 3, 4300 Essen, F.R.G.

Synopsis

Comparison principles for systems of reaction-diffusion equations coupled via both the reaction and diffusion terms are considered. Applications to the FitzHugh–Nagumo equations and models of coupled nerve fibres are included.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Aronson, D. G. and Weinberger, H. F.. Non-linear diffusion in population genetics, combustion and nerve propagation. Proceedings of the Tulane program in Partial Differential Equations and related topics. Lecture Notes in Mathematics 446, pp. 549. (Berlin: Springer, 1975). also Multidimensional non-linear diffusion arising in population genetics. Adv. in Math. 30 (1978), 33–76.Google Scholar
2Chueh, K. N., Conley, C. and Smoller, J. A.. Positively Invariant Regions for Systems of Non-linear Diffusion Equations. Indiana Univ. Math. J. 26 (1977), 373392.CrossRefGoogle Scholar
3Bell, J. and Cosner, C.. Stability Properties of a model of Parallel Nerve Fibres. J. Differential Equations 40 (1981), 303315.CrossRefGoogle Scholar
4Fife, P.. Mathematical Aspects of Reacting-Diffusion Systems. Lecture Notes in Biomathematics 28 (Berlin: Springer, 1979).Google Scholar
5Fife, P. and Tang, M. M.. Comparison Principles for Reaction-Diffusion Systems: Irregular comparison functions and applications to questions of stability and speed of propagation of disturbances. J. Differential Equations 40 (1981), 168185.CrossRefGoogle Scholar
6Fife, P. and Tang, M. M.. Corrigendum. J. Differential Equations 51 (1984), 442447.Google Scholar
7Grindrod, P. and Sleeman, B. D.. Qualitative analysis of reaction-diffusion systems modelling coupled unmyelinated nerve axons. IMA J. Math. Appl. Med. Biol. 1 (1984), 289307.CrossRefGoogle ScholarPubMed
8Grindrod, P. and Sleeman, B. D.. Comparison Principles in the Analysis of reaction-diffusion systems modelling unmyelinated nerve fibres. IMA J. Math. Appl. Med. Biol. 1 (1984), 343363.CrossRefGoogle ScholarPubMed
9Friedman, A.. Partial Differential Equations of Parabolic Type (Englewood Cliffs: Prentice Hall, 1964).Google Scholar
10Jones, D. S. and Sleeman, B. D.. Differential Equations and Mathematical Biology (London: Allen and Unwin, 1983).CrossRefGoogle Scholar
11Murray, J. D.. Non-linear Differential Equation Models in Biology (Oxford: Clarendon Press, 1977).Google Scholar
12Pauwelussen, J. P.. Heteroclinic waves of the FitzHugh–Nagumo equations (Amsterdam: Amsterdam University, Report TW 209/80, 1980).Google Scholar
13Sleeman, B. D.. Small amplitude periodic waves for the FitzHugh–Nagumo equations. J. Math. Biol. 14 (1982), 309325.CrossRefGoogle ScholarPubMed