Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T18:29:34.705Z Has data issue: false hasContentIssue false

A class of bisimple, idempotent-generated congruence-free semigroups

Published online by Cambridge University Press:  14 November 2011

J. M. Howie
Affiliation:
Mathematical Institute, University of St Andrews

Synopsis

Let X be a set with infinite regular cardinality m. Within the full transformation semigroup ℑ(X) a subsemigroup Sm is described which is bisimple and idempotent-generated. Its minimum non-trivial homomorphic image has both these properties and is also congruence-free. The semigroup contains an isomorphic copy of every semigroup having order less than m.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bachmann, H.. Transfinite Zahlen (Berlin: Springer, 1955).Google Scholar
2Byleen, Karl, Meakin, John and Pastijn, Francis. The fundamental four-spiral semigroup. J. Algebra 54 (1978), 626.CrossRefGoogle Scholar
3Byleen, Karl, Meakin, John and Pastijn, Francis. Building bisimple idempotent-generated semigroups. J. Algebra 65 (1980), 6083.Google Scholar
4Byleen, Karl, Meakin, John and Pastijn, Francis. The double four-spiral semigroup. Simon Stevin 54 (1980), 75105.Google Scholar
5Clifford, A. H. and Preston, G. B.. The algebraic theory of semigroups, vols 1 and 2 (Providence, R.I.: Amer. Math. Soc., 1961 and 1967).Google Scholar
6Dawlings, R. H. J.. Semigroups of singular endomorphisms of vector spaces (Ph.D. Thesis, Univ. of St Andrews, 1980).Google Scholar
7Eberhart, C., Williams, W. and Kinch, L.. Idempotent-generated regular semigroups. J. Austral. Math. Soc. 15 (1973), 2734.CrossRefGoogle Scholar
8Erdos, J. A.. On products of idempotent matrices. Glasgow Math. J. 8 (1967), 118122.CrossRefGoogle Scholar
9Hall, T. E.. Inverse and regular semigroups and amalgamation. Proc. Conference on Regular Semigroups, DeKalb, Illinois 1979.Google Scholar
10Halmos, P. R.. Naive set theory (New York: Van Nostrand, 1960).Google Scholar
11Howie, J. M.. The subsemigroup generated by the idempotents of a full transformation semigroup. J. London Math. Soc. 41 (1966), 707716.CrossRefGoogle Scholar
12Howie, J. M.. An introduction to semigroup theory (London: Academic Press, 1976).Google Scholar
13Howie, J. M.. Some subsemigroups of infinite full transformation semigroups. Proc. Roy. Soc. Edinburgh Sect. A 88 (1981), 159167.Google Scholar
14Lindsey, Diana and Madison, Bernard. The lattice of congruences on a Baer-Levi semigroup. Semigroup Forum 12 (1976), 6370.Google Scholar
15Mal'cev, A. I.. Symmetric groupoids. Mat. Sbornik 31 (1952), 136151 (Russian).Google Scholar
16Munn, W. D.. Embedding semigroups in congruence-free semigroups, Semigroup Forum 4 (1972), 4660.Google Scholar
17Munn, W. D.. Congruence-free inverse semigroups. Quart. J. Math. Oxford Ser. (2) 25 (1974), 463484.Google Scholar
18Munn, W. D.. A note on congruence-free inverse semigroups. Quart. J. Math. Oxford Ser. (2) 26 (1975), 385387.CrossRefGoogle Scholar
19Pastijn, F.. Embedding semigroups in semibands. Semigroup Forum 14 (1977), 247263.Google Scholar
20Pastijn, F.. Idempotent-generated completely 0-simple semigroups. Semigroup Forum 15 (1977), 4150.Google Scholar
21Pastijn, F.. Idempotente elementen in reguliere semigroepen (Thesis (geaggregeerde voor het hoger onderwijs), University of Gent, 1980).Google Scholar
22Preston, G. B.. A characterization of inaccessible cardinals. Proc. Glasgow Math. Assoc. 5 (1962), 152157.CrossRefGoogle Scholar
23Tamura, T.. Idecomposable completely simple semigroups except groups. Osaka Math. J. 6 (1956), 3542.Google Scholar
24Trotter, P. G.. Congruence-free inverse semigroups. Semigroup Forum 9 (1974), 109116.Google Scholar
25Trotter, P. G.. Congruence-free regular semigroups with zero. Semigroup Forum 12 (1976), 15.Google Scholar
26Trotter, P. G.. Congruence-free right simple semigroups. J. Austral. Math. Soc. Ser. A 24 (1977), 103111.Google Scholar