No CrossRef data available.
Published online by Cambridge University Press: 17 January 2019
We prove asymptotic formulae for sums of the form
$$\sum\limits_{n\in {\open z}^d\cap K} {\prod\limits_{i = 1}^t {F_i} } (\psi _i(n)),$$
The paper combines ingredients from the work of Green and Tao on linear equations in primes and that of Matthiesen on linear correlations amongst integers represented by a quadratic form. To make the von Mangoldt function compatible with the representation function of a quadratic form, we provide a new pseudorandom majorant for both – an average of the known majorants for each of the functions – and prove that it has the required pseudorandomness properties.