Hostname: page-component-cc8bf7c57-5wl6q Total loading time: 0 Render date: 2024-12-11T23:06:36.309Z Has data issue: false hasContentIssue false

Asymptotically self-similar global solutions of a semilinear parabolic equation with a nonlinear gradient term

Published online by Cambridge University Press:  14 November 2011

S. Snoussi
Affiliation:
Département de Mathématiques, Faculté des Sciences de Bizerte, Université Tunis II, Jarzouna 7021, Bizerte, Tunisia, ([email protected])
S. Tayachi
Affiliation:
Département de Mathématiques, Faculté des Sciences de Tunis, Université Tunis II, Campus Universitaire, 1060 Tunis, Tunisia ([email protected])
F. B. Weissler
Affiliation:
Laboratoire Analyse Géométrie et Applications, UMR CNRS 7539, Institut Galilée, Université Paris-Nord 93430 Villetaneuse, France ([email protected])

Extract

We study the existence and the asymptotic behaviour of global solutions of the semilinear parabolic equation u(0) = ϧwhere a, b ∈ℝ, q > 1, p > 1. Forq=2p/(p+1) and ½ 1(p-1)>1 (equivalently, q > (n + 2)/(n + 1)), we prove the existence of mild global solutions for small initial data with respect to some norm. Some of those solutions are asymptotically self-similar.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Alfonsi, L. and Weissler, F. B.. Blow up in ℝn for a parabolic equation with a damping nonlinear gradient term. In Nonlinear diffusion equations and their equilibrium, states, vol. 3, pp. 120 (Gregynog, 1989). Progress in Nonlinear Differential Equations and their Applications, vol. 7 (Basel: Birkhäuser, 1992).Google Scholar
2Ben-Artzi, M. and Koch, H.. Decay of mass for a semilinear parabolic equation. Commun. Partial Diff. Eqns 24 (1999), 869881.CrossRefGoogle Scholar
3Cannone, M.. A generalization of a theorem by Kato on Navier–Stokes equations. Rev. Mat. Ib. 13 (1997), 515541.CrossRefGoogle Scholar
4Cannone, M. and Planchon, F.. Self-similar solutions for the Navier–Stokes equations in K3. Commun. Partial Diff. Eqns 21 (1996), 179193.CrossRefGoogle Scholar
5Cazenave, T. and Weissler, F. B.. Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations. Math. Z. 228 (1998), 83120.CrossRefGoogle Scholar
6Chipot, M. and Weissler, F. B.. Some blowup results for a nonlinear parabolic equation with a gradient term. SIAM J. Math. Analysis 20 (1989), 886907.CrossRefGoogle Scholar
7Fila, M.. Remarks on blow up for a nonlinear parabolic equation with a gradient term. Proc. Am. Math. Soc. III (1991), 795801.CrossRefGoogle Scholar
8Haraux, A. and Weissler, F. B.. Non uniqueness for a semilinear initial value problem. Indiana Univ. Math. J. 31 (1982), 167189.CrossRefGoogle Scholar
9Kavian, O.. Remarks on the large time behavior of a nonlinear differential equation. Ann. Inst. Henri Poincaré Analyse non linéaire 4 (1987), 423452.CrossRefGoogle Scholar
10Kawohl, B. and Peletier, L. A.. Observation on blow up and dead cores for nonlinear parabolic equations. Math. Z. 202 (1989), 207217.CrossRefGoogle Scholar
11Nirenberg, L.. On elliptic partial differential equations. Ann. Sc. Norm. Sup. Pisa 13 (1959), 116162.Google Scholar
12Quittner, P.. Blow-up for semilinear parabolic equation with a gradient term. Math. Meth. Appl. Sa. 14 (1991), 413417.CrossRefGoogle Scholar
13Ribaud, F.. Analyse de Littlewood Paley pour la résolution d'équations paraboliques semilinéaires. Doctoral thesis, Université Paris-sud (1996).Google Scholar
14Souplet, P.. Finite time blow up for a nonlinear heat equation. Math. Methods Appl. Sci. 19 (1996), 13171333.3.0.CO;2-M>CrossRefGoogle Scholar
15Souplet, P. and Weissler, F. B.. Poincaré inequality and global solutions of a nonlinear parabolic equation. Ann. Henri Poincaré Analyse non linéaire 16 (1999), 335371.CrossRefGoogle Scholar
16Souplet, P.., Tayachi, S. and Weissler, F. B.. Exact self-similar blow-up of solutions of a semilinear parabolic equation with a nonlinear gradient term. Indiana Univ. Math. J. 45 (1996), 655682.CrossRefGoogle Scholar
17Tayachi, S.. Forward self-similar solutions of a semilinear parabolic equation with a nonlinear gradient term. Diff. Integral Eqns 9 (1996), 11071117.Google Scholar
18Tayachi, S.. Solutions autosimilaires d'équations semi-linéaires paraboliques avec terme de gradient non linéaire. Doctoral thesis, Université Paris-Nord. (1996).Google Scholar