Published online by Cambridge University Press: 12 July 2007
It is shown that, for integrals of the type with Ω RN open, bounded and f: Ω × Rm × Rd → [0, + ∞) Carathéodory satisfying a growth condition 0 ≤ f(x, u, υ) ≤ C(1 + |υ|p), for some p ∈ (1, + ∞), a sufficient condition for lower semi-continuity along sequences un → u in measure, υn → υ in Lp, Aυn → 0 in W−1, p is the Ax-quasi-convexity of f(x, u, ·). Here, A is a variable coefficients operator of the form with A(i) ∈ C∞ (Ω; Ml × d) ∩ W1, ∞, i = 1, …, N, satisfying the condition and Ax denotes the constant coefficients operator one obtains by freezing x. Under additional regularity conditions on f, it is proved that the condition above is also necessary. A characterization of the Young measures generated by bounded sequences {υn} in Lp satisfying the condition Aυn → 0 in W−1,p, is obtained.